
Algorithmic Cryptocurrency Trading

using Sentiment Analysis and Dueling

Double Deep Q-Networks

David Gallo

Supervised by Dr. Neha Chaudhuri

MSc Artificial Intelligence and Business Analytics

Toulouse Business School

August 4th, 2022

Executive Summary

This thesis details applications of sentiment analysis and deep reinforcement learning for cryp-

tocurrency price prediction of Ether. The research focused on a highly applicable use case, by

clearly detailing data features, data collection methodology, model attributes, and deployment

considerations. The goal of this thesis was not to build the highest-performing neural network for

cryptocurrency price prediction but rather to prove the technical feasibility of Deep Q-Networks

in a novel application and establish deep reinforcement learning and sentiment analysis as a

decision support system for investors.

Over 5 million Tweets were collected and processed in Spark NLP using FinBERT (a BERT

extension) for sentiment analysis, and hourly financial data of Ether was collected between

January 1, 2017 and July 22, 2022.

The first section of the thesis explores the causal relationships between Twitter sentiment

scores, number of tweets, and the closing price of Ether. Granger causality was used to determine

that the closing price of Ether forecasts social media sentiment and the number of Tweets.

Further, the number of tweets also forecasts changes in closing price.

Next, a Dueling Double Deep Q-Network (DDDQN) was built in Python to trade cryptocur-

rency by considering the trading process as a Markov Decision Process. The dataset was split

using pre-January 1, 2021 as a training set, and the time after the split as a testing set. The

trading agent of the DDDQN model generated -33.19% returns during the testing period with-

out Twitter data as feature input, beating the market by 20.28%. When sentiment scores and

Twitter volume were added as features, the performance increased by 10.95% to -22.24% returns,

beating the market by 31.23%, but with strong variability between runs for all cases.

This thesis addresses four gaps in existing literature. First, a novel combination of deep

reinforcement learning and sentiment analysis were combined for cryptocurrency price prediction,

something that to date has not been researched in depth. Next, it focuses on Ether, where most

cryptocurrency research focuses exclusively on Bitcoin. Third, the theory-heavy focus of prior

research papers was extended into practical applications by clearly detailing development and

deployment steps for a deep reinforcement algorithmic trader in a cloud-based environment.

Finally, a bear market was used as the testing set when measuring model performance, as most

previous cryptocurrency research was conducted during a strong bull market (pre-2021).

The conclusion summarizes that the novel application of deep reinforcement learning for

cryptocurrency price prediction does indeed merit future research, and provides some suggestions

to extend the work presented in this thesis.

1

Acknowledgement

There are a few people who deserve thanks for making this thesis possible. First, I would like

to express my gratitude to my supervisor, Dr. Chaudhuri, who guided me throughout this

project. I would also like to thank my professors and classmates for much-needed inspiration.

Next, to Layane, thank you for supporting me during long nights of research. And finally, my

biggest thanks goes to my parents and grandparents, for encouraging and funding my university

education. Without you, this work would not have been possible.

2

Contents

List of Figures 5

List of Tables 6

1 Introduction 7

1.1 Context . 7

1.1.1 What is cryptocurrency? . 7

1.1.2 How do cryptocurrency investments differ from equity investments? . . . 7

1.1.3 What is sentiment analysis? . 8

1.1.4 What is Granger causality? . 9

1.1.5 What is a Markov Decision Process? . 10

1.1.6 What is Q-learning? . 11

1.1.7 What is Deep Q-Network Learning? . 13

1.1.8 What are extensions to Deep Q-Learning? 14

1.1.9 How can sentiment analysis and Deep Q-Networks be used to trade cryp-

tocurrency? . 16

1.1.10 Why is this research important? . 16

1.2 Research objectives . 17

1.3 Research questions . 18

2 Literature Review 19

2.1 Social media sentiment and cryptocurrency prices 19

2.2 Sentiment analysis and ANNs for cryptocurrency price prediction 20

2.3 Reinforcement learning for cryptocurrency price prediction 21

2.4 Literature discussion and gaps . 22

3 Methodology 25

3.1 Hardware/software environment . 25

3.2 Cryptocurrency selection . 26

3.3 Financial data collection . 27

3.4 Social media text collection . 27

3.5 Sentiment analysis . 29

3.6 Feature engineering . 31

3.7 Granger causality . 31

3.8 Trading rules . 33

3.9 Experience replay memory . 34

3.10 DDDQN model architecture . 35

3.11 DDDQN parameters . 38

3.12 DDDQN training process . 39

3

4 Results Analysis 42

4.1 Data exploration . 42

4.1.1 Ether price data . 42

4.1.2 Ether Twitter sentiment scores . 44

4.2 Granger causality testing . 51

4.3 Deep Q-Networks . 53

4.3.1 Twitter data omitted from feature input 53

4.3.2 Twitter data included from feature input 63

5 Recommendations 69

6 Conclusion 70

7 References 72

8 Appendices 77

8.1 Azure Databricks setup . 77

8.2 Spark dataframe show() method . 84

8.3 Unit root testing . 85

8.3.1 Ether closing price . 85

8.3.2 Sentiment scores . 89

8.3.3 Number of Tweets . 93

9 About the author 97

4

List of Figures

1 DQN and DDQN estimates versus true values . 15

2 DQN versus DDQN performance . 16

3 Spark Dataframe schema for Twitter data . 28

4 Effect of a unit root in a time series after a shock 32

5 Dueling Double DQN model architecture . 36

6 Keras summary() method called on the compiled online network 37

7 Ether hourly price . 43

8 Ether hourly Twitter sentiment scores . 46

9 Ether hourly number of Tweets . 47

10 Ether hourly Twitter sentiment scores plotted against closing price 48

11 Ether hourly number of Tweets plotted against closing price 49

12 Ether hourly number of Tweets with top positive and negative sentiment plotted

against closing price . 50

13 Correlation between number of Tweets, sentiment scores, and closing price 51

14 Correlation between the first order difference of the number of Tweets, sentiment

scores, and closing price . 51

15 Granger causality between the first order difference of the number of Tweets,

sentiment scores, and closing price . 52

16 Actions selected by the agent during training in episode 30 (no Twitter data) . . 53

17 Inventory held by the agent during training in episode 30 (no Twitter data) . . . 54

18 Inventory held by the agent during training in episode 30, plotted against Ether

closing price (no Twitter data) . 55

19 Portfolio value of time during training episode 30, plotted against Ether closing

price (no Twitter data) . 56

20 Profit of the agent for each training episode (no Twitter data) 57

21 Actions selected by the trading agent during the first testing run (no Twitter data) 59

22 Inventory held by the agent during the first testing run (no Twitter data) 60

23 Inventory held by the agent during the first testing run, plotted against Ether

closing price (no Twitter data) . 61

24 Portfolio value over time during the first testing run, plotted against Ether closing

price (no Twitter data) . 62

25 Portfolio value over time during training episode 30, plotted against Ether closing

price (with and without Twitter data) . 64

26 Profit of the agent for each training episode (with Twitter data) 65

27 Portfolio value over time during the first testing run, plotted against Ether closing

price (with Twitter data) . 67

28 Spark Dataframe with rows of Twitter data . 84

29 ADF test on Ether closing price . 85

5

30 KPSS test on Ether closing price . 86

31 ADF test on first order difference Ether closing price 87

32 KPSS test on first order difference Ether closing price 88

33 ADF test on sentiment scores . 89

34 KPSS test on sentiment scores . 90

35 ADF test on first order difference sentiment scores 91

36 KPSS test on first order difference sentiment scores 92

37 ADF test on number of Tweets . 93

38 KPSS test on number of Tweets . 94

39 ADF test on first order difference number of Tweets 95

40 KPSS test on first order difference number of Tweets 96

List of Tables

1 Pandas head() method called on the Ether price dataframe 42

2 Pandas describe() method called on the Ether price dataframe 42

3 Pandas head() method called on the Ether sentiment scores dataframe 44

4 Pandas describe() method called on the Ether sentiment scores dataframe 44

5 Training summary (no Twitter data) . 58

6 Profit over 10 test runs (no Twitter data) . 63

7 Training summary (with Twitter data) . 66

8 Profit over 10 test runs (with Twitter data) . 68

6

1 Introduction

1.1 Context

1.1.1 What is cryptocurrency?

A cryptocurrency is a digitally secured currency, without a central authority like a government

or bank managing its distribution and validity. Its value is therefore determined by its supply

and the demand from people who trade and use it. It operates as both a medium for exchanging

value (in the same way that cash is used in a real-world transaction to purchase goods and

services), and also as an investment vehicle or store of value (purchased and traded similar to

shares in a public company on the stock market). Cryptocurrency is bought, sold, and traded

using the internet, and supported by a blockchain to record these transactions. (Narayanan,

Bonneau, Felten, Miller, & Goldfeder, 2016)

The most popular cryptocurrency, Bitcoin, was ideated by Satoshi Nakamoto (a pseudonym)

in their landmark 2008 paper titled “Bitcoin: A Peer-to-Peer Electronic Cash System.” The

paper described the first “electronic payment system based on cryptographic proof instead

of trust” (Nakamoto, 2008) where transactions are verified and stored on a blockchain. New

projects quickly followed Bitcoin, such as Ether (ETH), a cryptocurrency built on the Ethereum

blockchain where the cryptocurrency is used to support the underlying smart contract blockchain.

(What is Ether (ETH)? , n.d.)

A blockchain is an open and immutable ledger that records financial transactions. Most

importantly, it is distributed across all users of the blockchain, so that every user has an identical

copy. When a new transaction is entered, it is verified and added by all other users of the

blockchain. Cryptographic validation of new entries using hash functions prevents malicious

actors from adding fraudulent entries; only entries where the consensus of users verify its accuracy

are added. The name is derived from blocks of transactions that are linked together for form a

blockchain. Trading cryptocurrency using a blockchain is a fundamental example of the “sharing

economy”, the economic system whereby assets or services are shared between individuals using

the internet. (Frenken & Schor, 2017)

This thesis focused on Ether, the cryptocurrency built on the Ethereum blockchain, and the

second largest coin by market cap. (Goswami, Borasi, & Kumar, 2021) The Ethereum blockchain

offers the unique feature of storing code for execution in the form of “smart contracts”. Ether

is used as payment for users of the Ethereum blockchain to execute work on the network, and

can therefore be thought of as the “fuel” of the network. It differs in this sense from other

cryptocurrencies whose blockchains are used simply to record transactions. (Buterin, 2014)

1.1.2 How do cryptocurrency investments differ from equity investments?

Although cryptocurrencies were initially developed as a way to facilitate digital transactions, they

have found applications primarily as a investment vehicles. Peer-to-peer exchanges of currency

7

have been scaled into full-sized global exchanges – platforms like Binance or Coinbase allow

individuals to purchase, sell, and trade their cryptocurrency with other users, in a very similar

manner to stock exchanges like the NASDAQ.

Equity trading is primarily done through stocks – shares in public companies, bought and

sold by investors. As an asset class, stocks are well-established with large financial institutions

built solely for managing and trading stocks. On the other hand, cryptocurrencies are much

newer investment vehicles that lack the formal structure and governance of stocks, therefore

making them much more volatile. While this risk can certainly beget higher returns, trading

cryptocurrency should be done more cautiously to avoid significant losses.

Stocks represent partial ownership of a public company, while most cryptocurrencies are not

tied to any underlying asset. Therefore, while stocks can be speculative instruments, they are

often reflective of the assumed value of a company. If a company is performs better, its share

price will therefore increase. Cryptocurrency does not share this trait: it does not come with any

ownership of an entity, and its value is determined therefore by public sentiment rather than real-

world performance of usability and adoption. (Polasik, Piotrowska, Wisniewski, Kotkowski, &

Lightfoot, 2015) Bitcoin for example is rarely used in transactions (its primary use case), but had

a $1.49 billion market cap in 2020, with projections of reaching $4.94 billion by 2030 (growing

at a CAGR of 12.8% from 2021 to 2030) (Goswami et al., 2021). I believed that observing

the sentiment investors have towards cryptocurrency would therefore play an important role in

determining when it was profitable to buy or sell.

Until recently, most retail stock market investors have not been especially vocal on social

media with their expectations about stock performance. Tesla became an exception to this rule

as a company with a cult stock, where herd behaviour may in part have pushed its price to

unrealistic valuations (Cheng & Griffin, 2022). Cryptocurrencies are somewhat similar to Tesla

in this sense – many proponents of Bitcoin as a smart investment for example tend to be very

vocal about their thoughts. Smaller, newer coins too tend to have have more die-hard fanatics,

even with no objective reason for their expectations. Studies exploring this phenomenon have

highlighted cognitive bias as the likely cause, where new investors are enamored by the possibility

of incredible rewards, and publicly support their cryptocurrency of choice even when irrational.

(Delfabbro, King, & Williams, 2021)

1.1.3 What is sentiment analysis?

As previously mentioned, cryptocurrency prices are driven primarily by public sentiment – the

more investors who want to purchase it as a store of value, the higher the price grows. It therefore

seemed beneficial to collect and measure that public sentiment, in order to predict how and when

the price might change. Sentiment analysis is an application of Natural Language Processing

(NLP) that allowed us to do exactly that.

Sentiment analysis is the collection, processing, and extraction of textual data to systemati-

cally determine and quantify emotional state. To do this, a machine learning model (in the case

8

of this research, an artificial neural network (ANN)) is trained using a collection of sentences

labeled with their sentiment and used to classify new data. Advanced sentiment analysis models

distinguish between different human emotions (e.g. fear, happiness, sadness, surprise), whereas

more general models rank a sentence’s sentiment from positive to negative. (Mohammad, 2016)

Because overall negative or positive outlook of cryptocurrency was the most important output

for the application presented in this thesis, a generalized model that simply highlights whether

text was more positive or negative was sufficient. The most important characteristic of the senti-

ment analysis model that was selected in this thesis was that its training data contained similar

sentences as would appear in the data intended for classification.

1.1.4 What is Granger causality?

One of the focuses of this thesis was to include exploration of social media sentiment and its

effect on cryptocurrency prices. Determining cause and effect is not a trivial task however –

correlation between cryptocurrency price and sentiment does not necessarily mean that one

causes the other. One could argue that strong social media support encourages people to buy

cryptocurrency, thus inflating the price. On the other hand, one could equally argue that a well-

performing cryptocurrency encourages investors to share their positive feelings on social media.

Causality goes beyond correlation and asserts that a variable, X (social media sentiment), can

be said to cause another variable Y (cryptocurrency prices) if changing X results in a change

in Y , but changing Y does not necessarily result in a change in X. When two variables are

correlated but not causal however, symmetric changes are expected. (Eichler, 2012)

Because a trading agent does not have control over cryptocurrency prices and social media,

statistical approximations can instead be used to measure causality. Of these statistical tests,

Granger causality is among the most popular for time-series data, meaning it is applicable to

the use case in this research. Econometritian Clive Granger created his method for causality

detection with the argument that causality in economics could be tested for by using lagged

values of one time series to predict the future values of a different time series. This predictive

causality, or precedence, allowed researchers to understand if one variable forecasted another.

Paraphrased from Granger’s original 1969 paper: a time series X is said to Granger-cause Y

if it can be shown, usually through a series of t-tests and F-tests on lagged values of X (and with

lagged values of Y also included), that those X values provide statistically significant information

about future values of Y . (Granger, 1969) Granger later clarified the causality relationship based

on two principles: (Granger, 1980)

1. The cause happens prior to its effect.

2. The cause has unique information about the future values of its effect.

Given these two assumptions, Granger proposed the following hypothesis test for identification

9

of a causal effect of X on Y :

P[Y (t+ 1) ∈ A | I(t)] ̸= P[Y (t+ 1) ∈ A | I−X(t)] (1)

where P refers to probability, A is an arbitrary non-empty set, I(t) denotes the information

available in an environment at time t, and I−X(t) denotes the information available in the same

environment but with X excluded. If the above hypothesis is accepted, it can be said that X

Granger-causes Y .

1.1.5 What is a Markov Decision Process?

Markov decision processes (MDP) are a specific types of sequential decisions which are at the

foundation for problems that can be solved using reinforcement learning. MDPs provide a math-

ematical framework to model decision making in a partly-random environment. Fundamentally,

an MDP is a stochastic control process, where a decision is made to transition into a future state

with discrete time steps. MDPs are not new research, popularized originally by Richard Bellman

in his 1957 paper “A Markovian Decision Process”, which extended Andrey Markov’s notion of

Markov chains.

In an MDP, an agent (decision-maker) observes the state of its environment at each discrete

time step t = 0, 1, 2, ... to learn the current state, st, then takes an action based on this observa-

tion, at. Based on the action state pair, the agent is granted a reward for the next state, rt+1, a

new discount factor for future rewards, γt+1, and the environment then changes with randomness

into a new state, st+1. In an MDP, a ∈ A where A is the action space, r ∈ R where R is the

reward space, and s ∈ S where S is the state space, and γ ∈ [0, 1]. The reward function is given

by r(s, a) = E[rt+1 st = s, at = a]. The probability of moving into a new state s′ is given by

the state transition function T (s, a, s′) = P (st+1 = s′ | st = s, at = a). The Markov property is

satisfied because the state transitions are considered independent. An MDP can therefore be

denoted as the following tuple:

(S,A, T, r, γ) (2)

MDPs differ from Markov chains only by adding a decision point (selecting an action) and

providing rewards based on that action. Consider for example an MDP where there is only one

action in a given state and that all rewards are the same; in this situation, the MDP simplifies

to a Markov chain.

From a state st, the discounted sum of rewards is given by:

Gt = rt+1 + γrt+2 + γ2rt+3 + ...

10

which is more generally represented as:

Gt =

∞∑
n=0

γnrt+n+1 (3)

The discount for a reward n steps in the future is given by the product of all discounts before

that step: γnt =
∏n
i=1 γt+1. Discounting each term in the sum over time with γn is required to

prevent the sum from increasing infinitely – assuming a continuing task problem with no end

point (such is the case with cryptocurrency trading), the expected sum of rewards would be

infinite: Gt = rt+1 + rt+2 + ...+ r∞. The discount factor forces the infinite sum to converge.

The objective of an agent in an MDP is to choose a policy π that maximizes the expected

discounted sum of rewards. π is a probability distribution over the actions in each state. For

example, at time t, if an agent follows policy π then π(a|s) is the probability of at = a when

st = s. Next, a value function can be defined that describes the expected future rewards for an

agent to select a specific action or to be in a given state. If the policy π denotes the probability of

selecting an action in a given state, then the value function denotes how beneficial it is. Knowing

that the policy is trying to maximize the sum of discounted return, these values are of course

inherently linked. The state-value function for policy π (denoted as vπ) describes how good a

state is for an agent following that policy. The value of state s under policy π is therefore the

expected return of discounted rewards when starting in state s and following π. Equation (3)

can be used to define vπ(s) as:

vπ(s) = Eπ[
∞∑
n=0

γnrt+n+1 | St = s] (4)

The action-value function for policy π (denoted as qπ) describes how beneficial it is for the agent

to take an action while following policy π. The value of action a in state s under policy π is the

expected return of discounted rewards when starting from state s, taking action a, and following

policy π from that point forwards. Equation (4) can be used to define qπ(s, a) as:

qπ(s, a) = Eπ[
∞∑
n=0

γnrt+n+1 | St = s,At = a] (5)

This function is colloquially referred to as the q-function, and the output from the function for

a state-action pair the q-value. This transitions us directly into Q-learning.

1.1.6 What is Q-learning?

In Q-learning, the notion of MDPs is extended to describe how an optimized policy π can be

found. A policy is considered better (more optimal) than another if the expected return of

11

discounted rewards is greater than another policy for all states:

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s) ∀ s ∈ S

Returning back to the idea of state-action values, an optimal q-function can be denoted as q∗,

and defined as:

q∗(s, a) = max
π

qπ(s, a) ∀ s ∈ S, a ∈ A (6)

In other words, this means that q∗ generates the largest expected discounted rewards achievable

by any policy π for each possible state-action pair.

One of the most important concept in Q-learning is Bellman’s Optimality Equation, which

states that q∗ must satisfy:

q∗(s, a) = E[rt+1 + γmax
a′

q∗(s
′, a′)] (7)

What this formula means is that for any state-action pair (s, a) at time t, the expected

discounted rewards from starting in state s, choosing action a, and following the optimal policy

π∗ (as elaborated, the q-value of this state-action pair) is the immediate reward received (i.e.:

rt+1), plus the maximum expected discounted return that can be achieved by any possible next

state-action pair (s′, a′). Because the agent follows an optimal policy π∗, the next state s′ must

be the best possible state for the agent, which allows the agent to select the best possible next

action a′.

Using the Bellman Equation to find q∗ is valuable, because an optimal policy can be deter-

mined or approximated with reinforcement learning. This is because deep learning can be used

to determine the action a that maximizes q∗(s, a).

The objective of Q-learning is to find the optimal policy π∗ by learning the optimal Q-

values for each state-action pair. In a finite and sufficiently small state and action space, this

is achievable without using deep learning for approximation. To find the optimal policy in a

smaller state-action space, the Q-learning algorithm iteratively updates the Q-values as it tests

different state-action pairs by using the Bellman equation until the Q-function converges.

After testing all possible state-action pairs, the agent knows what action to take to maximize

reward. However, knowing when to explore the environment to test state-action pairs, or select

the best action to maximize reward is a classic exploration/exploitation reinforcement learning

problem. Q-learning derives new policies from a state-action value function by acting “ϵ-greedily”

when selecting action values. The agent chooses the action with with the highest expected

cumulative discounted return (the greedy action) with probability 1 − ϵ, and otherwise select

an action from the action space A at random with uniform probability. Although randomly

selecting actions may provide less reward, the agent cannot learn optimal policies and correct its

estimates without experimentation.

To update the q-value of a state-action pair (s, a), the Bellman Equation (Bellman, 1957) is

12

used to calculate the q∗(s, a) and iteratively compare the loss between q(s, a), and q∗(s, a). The

q-value is updated each time the agent sees the same state-action pair by taking the weighted

average of the new q-value, discounted by a learning rate α, and the old q-value. Mathematically,

the loss function to compare old and new q-values is denoted as:

q∗(s, a)− q(s, a) = loss

Expanding the equation using equations (5) and (7):

E[rt+1 + γmax
a′

q∗(s
′, a′)]− Eπ[

∞∑
n=0

γnrt+n+1] = loss (8)

The goal of a reinforcement learning algorithm is to minimize this loss function.

1.1.7 What is Deep Q-Network Learning?

Large state or action spaces make it computationally infeasible to learn q-value estimates for

each state-action pair to create an optimal policy. In the application presented in this thesis, the

state space is effectively infinite since the price of cryptocurrency can be any real number.

In Deep Q-Learning, the same concepts as Q-learning are applied, but a neural network is

used to estimate q-values for state-action pairs. Once the loss is calculated according to equation

(8) using neural network approximations for q-values, the gradient of the loss is back-propagated

to update the weights of the neural network, the same as any other artificial neural network.

The last addition to Deep Q-Networks is the idea of an online and target network: two identical

neural networks, where the target network is updated more slowly than the online network.

To calculate the loss between the actual q-values and the estimated optimal (target) q-values,

two passes through the neural network must be made. This is because in equation (5), the

next state-action pair (s′, a′) must be computed as well as the current state-action pair (s, a),

which is used when calculating loss in equation (8). This process leads to unstable learning if

the same neural network weights are used in both passes. As the actual q-values approach their

target q-values, the target q-values continue to move farther away. Optimization is therefore

unstable since the target q-values are always be moving in the same direction as output q-values.

To counteract this problem, a second neural network is introduced (the target network), which

calculates the target q-values. The weights of this network are periodically copied from the

online network; the fixed q targets from this network support much more stable learning. For a

deeper understanding about why two neural networks are necessary, the source paper on Deep

Q-Networks explored this in greater detail (Mnih et al., 2015)

The architecture of the neural networks as well as the training process for Deep Q-Networks

are elaborated in the Methodology section of this paper.

13

1.1.8 What are extensions to Deep Q-Learning?

As Deep Q-Learning was the first major paper exploring a deep neural network model built

exclusively for reinforcement learning, various improvements have since been made to increase

its performance in standard tests. Six of the most applied extensions to Deep Q-Networks were

summarized in Hessel et al’s 2017 paper “Rainbow: Combining Improvements in Deep Reinforce-

ment Learning”. Of these, the Dueling DQN and Double DQN are among the simplest and most

effective changes to the underlying model. Although combining all extensions to use Rainbow

DQN for this thesis would have been interesting, the complexity meant that it would be out of

scope for a paper focused on experimenting with a simple proof of concept. Instead of using all

six extensions, Double DQN and Dueling DQN were selected as two that could be easily added

to Deep Q-Networks with minimal code changes, in order to enhance the base Deep Q-Network’s

performance and provide the best chance of success for this application of reinforcement learning.

Dueling Deep Q-Networks

The Dueling Deep Q-Network (Dueling DQN) is a neural network architecture designed for

value-based reinforcement learning, which was the exact use case for this thesis. A dueling

network uses two different output streams: the value stream, computing the value of a state

(single node), and the action stream, computing the value of each action in the action space (one

node per action). These are then merged by a non-trivial linear aggregation. The importance of

this aggregation is described in the paper that introduced Dueling networks, “Dueling network

architectures for deep reinforcement learning” (Wang et al., 2015). The details are not elaborated

here, but suffice to say that simply adding the values of the state to the actions is not sufficient;

the average action value must be calculated and used as well. The mathematical representation

of a Dueling DQN is as follows:

qθ(s, a) = vη(fξ(s)) + aψ(fξ(s), a)−
∑
a′ aψ(fξ(s), a

′)

Nactions
(9)

where ξ is the parameter of the shared encoder fξ, η is the parameter of the value stream vη,

and ψ is the parameter of the advantage stream aψ. θ = ξ, η, ψ is their concatenation.

As shown, the Deep Q-Network equation is expanded by separating the value of actions from

the value of the state. This allows the network to better distinguish between the values of differ-

ent actions. In most states, the expected reward from all actions are similar, making the decision

less important. Purchasing a unit of cryptocurrency for example during a stable economic period

is less important than purchasing one right before a sharp price increase. Although a Dueling

DQN tends to be more valuable in environments with a large action space, it should still im-

prove learning during periods of stability in the environment, where buying and selling units of

cryptocurrency yields similar results to holding. In vanilla Deep Q-Networks, the q-values for

each training iteration are updated with q-values only for the specific actions taken in each state.

This results in slower learning as the q-values for actions that were not taken yet are not used.

14

In contrast, the dueling architecture speeds up learning as an agent can start learning the value

of a state even if only a single action has been taken in that state.

Double Deep Q-Networks

The Double Deep Q-Network (DDQN) architecture architecture is similar to the vanilla DQN

but leverages a second neural network to determine the q-value of the maximal action, after that

maximal action was first selected by the first neural network.

One of the major mathematical deficiencies of vanilla Deep Q-Networks is the inherent overes-

timation bias present during q-value calculations. Because of the maximization step in equation

(9):

max
a′

qθ(St+1, a
′
t)

the network implicitly takes the estimate of the maximum value. For example, consider the

situation where each action in a single state has a true q-value of 0. However, because q-values

are being estimated, they are distributed around 0, with some above and some below. When the

maximum is selected, it therefore chooses a value greater than 0. Because Deep Q-Networks since

Q-learning involves bootstrapping, where it learns new estimates from its previous estimates, this

overestimation leads to unstable learning. (Wang et al., 2015) illustrated this overestimation bias

using Atari game environments:

(Wang et al., 2015)

Figure 1: DQN and DDQN estimates versus true values

The authors further showed that overestimation bias resulted in significantly lower perfor-

mance in some applications:

The solution to overestimation bias is to separate the calculation of maximal action from

the estimation of that action’s value. This can be accomplished by using two different q-value

estimators, each of which is used to update the other, thus reducing the effect of maximization

bias.

Hasselt first addressed this overestimation in his 2010 paper “Double Q-learning” by using two

separate q-value estimators – using one or the other with 50% probability to select the maximal

action and update the estimator not selected. The same author later elaborated his methodology

for deep learning in his paper “Deep Reinforcement Learning with Double Q-learning”. There,

15

(Wang et al., 2015)

Figure 2: DQN versus DDQN performance

he used a first neural network, Q (which is referred to from this moment forwards as the “online”

network) to select the maximal action, then a second neural network, Q′ (which is referred to

as the “target” network) to estimate the q-value of that action. Mathematically, this modified

Deep Q-Network equation is represented as:

q∗(st, at) ≈ rt + γQ(st+1, argmaxa′Q
′(st, at)) (10)

Q′ (the target network) copied the weights of Q (the online network) every n time steps, where

n was a hyperparameter of the dual network system. Further details about hyperparameter

selection can be found in the methodology section.

As described in the methodology section, this research combined both extensions to create a

high-performing Dueling Double Deep Q-Network (DDDQN).

1.1.9 How can sentiment analysis and Deep Q-Networks be used to trade cryp-

tocurrency?

As highlighted, reinforcement learning works by identifying patterns in source data to try to

determine optimal decisions over time. Many pieces of research have shown that there is a

strong correlation between social media sentiment and stock prices, so much so that patterns in

sentiment can be used to effectively predict stock market movement (Bharathi & Geetha, 2017).

Therefore, I propose that sentiment scores may be an important feature for a reinforcement

learning model designed to trade cryptocurrency, since cryptocurrency markets and stock markets

share many similarities (Durcheva & Tsankov, 2019). Sentiment analysis can therefore be used

as decision-making input when deciding to trade.

1.1.10 Why is this research important?

This research served to provide investors with an alternative decision support system to techni-

cal analysis, fundamental analysis, statistical measures, price action, and RNN-based algorithmic

traders. Deep learning models using historical price and volume data for cryptocurrency pre-

diction had already been thoroughly developed and tested using supervised LSTM, GRU, and

16

RNN neural networks, well-described in the literature summary “A comparative study of bitcoin

price prediction using deep learning” (Ji, Kim, & Im, 2019). However, reinforcement learning

was relatively under-researched as a trading tool, with fewer applications still researching its

effectiveness on cryptocurrency markets. This was therefore a novel application of reinforcement

learning, which may provide unique decision-making support where other algorithmic trading

models did not.

Reinforcement learning, while not necessarily more accurate than supervised learning, has

a unique set of benefits for cryptocurrency trading. It is a more “human” style of machine

learning, where an algorithm is provided a given scenario and instructed to choose an action,

mimicking the behaviour of a human investor (albeit on a much faster scale, with more data).

Like a human, an algorithm can “test” the market with different trades, learn from the results,

and create a profitable trading strategy. Further, training is inherently sequential, meaning that

how the model learns is also more intuitive to understand than supervised neural networks.

Although machine learning and artificial intelligence (AI) have become more prevalent in the

business world, there are still large gaps in understanding about how these tools can be used.

Unfortunately, the “black box” nature of most deep learning algorithms can prevent managers

from adopting them. Humanizing complex calculations through more intuitive methods like

reinforcement learning can encourage adoption. (Markus, Kors, & Rijnbeek, 2021)

There are also three main gaps in existing research that were addressed with this thesis.

First, a novel combination of deep reinforcement learning and sentiment analysis were combined

for cryptocurrency price prediction, something that to date had not been researched in depth.

Next, the performance of a deep learning model was measured in the recent cryptocurrency bear

market, something that prior research had not been able to do. Finally, the theory-heavy focus of

prior research papers was extended into practical applications by clearly detailing development

and deployment steps for a deep reinforcement algorithmic trader in a cloud-based environment.

1.2 Research objectives

There were two clear research objectives from this thesis:

1. Determine whether there is a causal relationship between social media data and the price

of cryptocurrency, using big data.

2. Create a proof-of-concept automated cryptocurrency trading algorithm using Deep Q-

Networks, with sentiment analysis and price data as feature input.

It is important to note that the goal of this thesis was not to build the highest-performing

neural network for cryptocyurrency price prediction; if that were the case, selecting a supervised

learning model like LSTM would likely yield stronger results. Instead, this thesis served to show

whether sentiment analysis was valuable for reinforcement learning, and to prove the technical

feasibility of Deep Q-Networks in a novel application, with the goal of promoting future research

17

in this area. For this reason, this thesis did not experiment with different model parameters or

architectures, leaving optimization as a piece of future studies.

1.3 Research questions

Breaking down the research objectives, there were four categories of questions posed before

research began:

It is clear from observation that there is a correlation between social media discussion of

cryptocurrency and the price of the underlying cryptocurrency. Can causality be determined

between sentiment and price? If so, what is the lag between one variable and the other? Further,

can an indicator like the number of people talking about a cryptocurrency be used for the same

comparison as social media sentiment?

Second, what are the technical requirements to collect sentiment data and train a Deep

Q-Network for prediction? In order to create a very applied thesis, clearly detailing system

requirements should be a direct output of this research

Third, can a Deep Q-Network model generate profit trading cryptocurrency? Ultimately, it

is unlikely that a reinforcement learning model can outperform traditional supervised learning

models on financial data, but it is valuable to understand if profit is generated at all in order to

act as a valuable trading strategy decision metric.

Finally, how important are sentiment scores and social media discussion volume as feature

input to a Deep Q-Network with regards to profitability?

18

2 Literature Review

The keywords searched for in the literature review were summarized thematically into the follow-

ing sections. All searches included some variation on the keywords “Cryptocurrency”, “Bitcoin”,

“Ether”, and “Ethereum”.

1. Social media sentiment and cryptocurrency prices, where keywords including “Sentiment

Analysis”, “Social Media Prediction”, and “Market Sentiment” were used.

2. Sentiment analysis and ANNs for cryptocurrency price prediction, where focus was placed

more heavily on using ANNs with sentiment analysis as feature input. Keywords included

the previous list, as well as “Deep Learning”, “Neural Network”, “LSTM”, and “RNN”.

3. Reinforcement learning for cryptocurrency price prediction, where keywords included “Re-

inforcement Learning”, “Q-learning”, “Stock Markets”, and “Price Prediction”.

A handful of the most important papers from each theme were selected and discussed below.

2.1 Social media sentiment and cryptocurrency prices

In an era where social media usage has exploded and cloud computing has made NLP more ac-

cessible, sentiment analysis using social media data as input has become a major focus of current

academic papers. One application with significant focus is to use sentiment analysis to under-

stand financial markets – cryptocurrency markets included, although research predominantly

focuses on Bitcoin. One of the most cited works is the 2018 paper “How Does Social Media Im-

pact Bitcoin Value? A Test of the Silent Majority Hypothesis” (Mai, Shan, Bai, Wang, & Chiang,

2018), where the authors showed that trends in social media posts supporting purchasing bitcoin

are associated with higher future bitcoin values. This correlation was strongest among posts

from the 95 percent of users who were less active and whose contributions amounted to less than

40 percent of total messages. Importantly, focused cryptocurrency forums had a stronger pre-

dictive power on future cryptocurrency prices compared to Twitter. One gap identified in their

methodology however was to use more complex causal inference tools to justify their claims for

predictive power. That being said, the journal article still suggested that social media sentiment

was an important predictor in determining Bitcoin prices, even if the source of the sentiment

varied in importance. Because this thesis used big data as the source for sentiment analysis, it

significantly limited the possibility of extracting data from specialized cryptocurrency forums,

where the traffic of posts may not have been significant enough to qualify as big data. Fur-

ther, extracting huge corpuses of data from a variety of discreet forums would have required

significant effort, outside the scope of this thesis. That being said, the authors still clearly estab-

lished platforms like Twitter as valuable predictors for Bitcoin price, even if less effective than

subject-specific forums.

Selecting Twitter as a data source was also supported by “Does Twitter predict Bitcoin”

(Shen, Urquhart, & Wang, 2019), where the authors compared the number of Tweets to trading

19

volume and volatility of Bitcoin. The authors used Granger causality tests to show that the

number of Tweets were an important predictor. It was interesting therefore to see if Granger

causality also appeared for Ether price changes. Given how closely Ether and Bitcoin were

visually correlated, I predicted that I would find similar results. The paper also affirmed the

methodology of using Granger causality testing on cryptocurrency data.

A related paper was “Coin Market Behavior using Social Sentiment Markov Chains” (Kim,

Lee, & Assar, 2021), which explored social media sentiment’s effect on cryptocurrency by treating

market behaviour as a Markov chain, with this concept supported by other published research

including (Ballis & Drakos, 2020), (Li, 2021), (Nascimento, Santos, Jale, Júnior, & Ferreira,

2022), and (Ramadani & Devianto, 2020). This approach was interesting, as it affirmed the

possibility of using Deep Q-Learning to predict cryptocurrency prices, since Q-learning is based

on Markov Decision Processes. The authors distinguished the effect of social sentiment during a

bull versus a bear market. They used a similar approach as the one proposed in this thesis, by

extracting social media sentiment from Twitter, once again validating the methodology in this

paper. The authors found that social sentiment was more relevant at predicting cryptocurrency

prices during a bull market than during a bear market. This research was interesting, because

most existing cryptocurrency research considered market performance since inception, or within

some set number of years. Up until late-2021, cryptocurrency had seen a a strong bull market.

This meant that the findings of this thesis, which included test data after 2021, may not have had

the same predictive power of sentiment analysis on cryptocurrency prices as previous studies,

but it could be interesting to compare against them. One significant limitation identified was

the use of social media data only from South Korea – although a relatively large country, the

vast majority of cryptocurrency investors come from English-speaking countries (Goswami et al.,

2021). It should be cautioned that over-generalizing based on an culturally-biased data subset

may have led to incorrect assumptions. As discussed in the conclusion, this thesis was not above

this flaw either; only English data was collected, but the hope was that the enormous volume

of data would make cultural bias more fuzzy. Social sentiment data was collected by crawling

Bitcoin-related posts on Twitter.

2.2 Sentiment analysis and ANNs for cryptocurrency price prediction

(Critien, Gatt, & Ellul, 2022) extended the work of (Abraham, Higdon, Nelson, & Ibarra, 2018)

to predict not only the direction of cryptocurrency movement, but the magnitude of change.

They chose to use both the sentiment of Tweets as well as the volume of Tweets. They used two

types of ANNs for the goal of identifying price change: convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), the two most popular ANNs for financial market prediction.

They then added an additional multi-classification model to predict the magnitude of change.

Their approach affirmed that neural networks were capable of relatively high accuracy in price

prediction. The same methodology of collecting both Twitter sentiment scores and number of

Tweets as features was used in this thesis, as they showed the latter to be an important feature

20

of their data.

“Cryptocurrency Price Prediction Using Tweet Volumes and Sentiment Analysis” (Abraham

et al., 2018) was an especially interesting paper as the authors looked at not only Bitcoin but also

at Ether for price prediction. It was therefore important input for this thesis, as it showed that

Ether exhibited similar behaviour under analysis as Bitcoin. However, the authors neglected to

show the results of training and testing their model on Ether, leaving room for this thesis to add

to their research.

“Time Series Analysis of Cryptocurrency Prices Using Long Short-Term Memory” (Fleischer,

von Laszewski, Theran, & Bautista, 2022) built on (Kwon, Kim, Heo, Kim, & Han, 2019) and

(Critien et al., 2022) (previously discussed) by building an LSTM model for cryptocurrency price

prediction using Bitcoin, Ether, Dogecoin, and EOS. Unlike the data used in this these, they

included only closing price values in their model as feature input. Their results showed that

using a neural network performed better than ARIMA models for all cryptocurrencies, although

the lowest improvement over ARIMA models was for Ether, at +13.9% root-mean-squared error.

This was an interesting result for this thesis, because if Deep Q-Learning can generate meaningful

returns, it may be able to compete with supervised learning models like LSTM.

Finally, CNNs have become especially prominent for price prediction of cryptocurrency, as

highlighted in “CNN-based multivariate data analysis for bitcoin trend prediction” (Cavalli &

Amoretti, 2021) and “An advanced CNN-LSTMmodel for cryptocurrency forecasting” (Livieris:2021,

Kiriakidou, Stavroyiannis, & Pintelas, 2021). In both papers, the authors used CNNs to gener-

ate state-of-the-art returns in bull markets. Although CNNs were not be applied in this paper’s

methodology, it was important to mention them in the literature review as they mark the highest

performance for ANNs in cryptocurrency price prediction – and as such, they could be integrated

in future Deep Q-Learning research by adding convolutional layers to Deep Q-Networks.

2.3 Reinforcement learning for cryptocurrency price prediction

Limited literature existed that discussed applications of reinforcement learning for price predic-

tion. Of the existing research, most was quite recent, with papers published in the last two

years.

“Deep reinforcement learning for the optimal placement of cryptocurrency limit orders”

(Schnaubelt, 2022) examined a number of state-of-the-art reinforcement learning algorithms not

to determine price movement, but to decide where at what price to place limit orders for Bit-

coin and Ether. The algorithms they selected are backward-induction Q-learning, deep double

Q-networks (applied in this thesis, with the addition of a dueling architecture), and proximal pol-

icy optimization. Like this thesis, the authors leveraged big data to build their feature set, with

300 million historic trades and more than 3.5 million order book states from major exchanges and

currency pairs. However, unlike this thesis, they did not consider social media sentiment in any

respect, nor did they attempt to optimize both purchases (market orders, rather than limit or-

ders) and sales (market sales). The results of the paper showed that reinforcement learning could

21

indeed be used to generate profits from a cryptocurrency portfolio, although Deep Q-Learning

fell behind proximal policy optimization as an optimal strategy.

“Recommending cryptocurrency trading points with deep reinforcement learning approach”

(Sattarov et al., 2020) used a deep reinforcement learning algorithm similar to Deep Q-Networks.

The model the authors built classified results as either a price increase, decrease, or no move in

cryptocurrency data, using a 5-layer densely-connected neural network, with a single output node

denoting the best action to take. The trading agent in their model achieved 14.4% net profits

within one month of Bitcoin trading during a bull market, and an impressive 41% profit for Ether

in the same market. Their research suggested that Deep Q-Learning could likely exhibit similar

performance, although there were some notable gaps in the methodology of the researchers. First,

the models were not back-tested on bear market time series, and second, the dataset was limited

to pre-2020, before the huge volatility of cryptocurrency markets took effect. It was necessary

therefore to extend the research into present day, using post 2020-data for training and testing.

The only meaningful research published that uses Deep Q-Learning to predict when to buy

and sell cryptocurrency at market prices was “Deep Q-learning for Trading Cryptocurrency”

from the Journal of Financial Data Science (Ma, Wang, & Fleiss, 2021). The authors used three

different cryptocurrencies in their model: Bitcoin, Ether, and Litecoin (the last one being a fork

from Bitcoin), and achieved portfolio returns of 66% over 2000 episodes. However, the time series

selected for training and testing was mostly during a strong bull market, and as such, the Deep

Q-Network was not evaluated in the current recession of cryptocurrency prices. The authors

also noted that the variance between episodes was very significant, due to the high volatility of

cryptocurrency prices and Deep Q-Network’s stepwise nature. The authors concluded that Deep

Q-Learning for cryptocurrency prices warranted further research, and this thesis extended their

work by adding sentiment analysis as a feature, using more data, and data during a bear market.

2.4 Literature discussion and gaps

Based on previous research, sentiment analysis and social media volume metrics would likely play

an important role in understanding price fluctuations in financial markets. Because cryptocur-

rencies (more than equity markets) are strongly tied to investor sentiment for future rewards,

and as social media usage continues to grow, sentiment analysis should display important trends

that could be used to predict cryptocurrency prices.

Next, it seemed that reinforcement learning was unlikely to provide strong financial returns

when used as a trading tool. This was primarily because of the strong volatility of markets and

the lack of control an algorithmic trading agent can exert on its environment. I hypothesized

therefore that a Deep Q-Network could likely be built and trade as competently as an uninformed

trader, but not generate any substantial returns.

Based on my literature review, there were some key gaps in existing research to highlight.

First, reinforcement learning was rarely used in financial market applications outside of portfolio

management. Deep Q-Learning especially saw very few practical applications – because of its

22

novelty, it was still heavily rooted in academia. Most applied examples for Deep Q-Networks

had traditionally been to mimic humans playing videos games, or to train human-like robots.

This thesis therefore explored a relatively unknown application of Deep Q-Networks on financial

data. Proposing alternative, practical use cases for the algorithm (as done in this paper) may

contribute to the wider adoption of reinforcement learning in financial institutions as a valid

alternative supervised machine learning and technical analysis.

Another key gap valuable to point out was the abundance of research on Bitcoin and not

smaller coins like Ether. Although the second biggest coin, fewer papers referencing Ether or

similar cryptocurrencies had been written by a factor of nearly ten. It was therefore valuable

to add an additional perspective to cryptocurrency research by exploring a secondary (but still

widely popular) coin.

Next, papers that studied social media sentiment scores of cryptocurrency focused primarily

on the correlation between sentiment and price, and did not create end-to-end practical models

to predict cryptocurrency prices. With Deep Q-Networks specifically, there was no research that

combined this type of reinforcement learning with sentiment, volume. and historical price as

feature inputs. As such, this thesis explored a previously unresearched combination of features

and machine learning model.

Additionally, the goal of this thesis was to be deeply applied, by including sections dedicated

to explaining how the model was developed and deployed. Many prior research papers neglected

implementation steps, hyper-focusing on algorithm development and results. This paper should

serve as a starting point for further research using Deep Q-Networks in financial applications.

In the methodology, industry-standard tools and technology were selected (e.g. Python, Spark,

and Tensorflow) to facilitate adoption in companies’ existing technology infrastructure. Very

few academic papers detailed their hardware/software environment, with fewer still describing

considerations for cloud deployment. In contrast, this thesis detailed a practical approach to

training and deploying the deep learning model. Finally, using a cloud environment maximized

the accessibility of this work by allowing real-time scaling of hardware resources with minimal

capital expenditure. This meant that businesses or individuals who do not own adequately

strong computing hardware to locally train and deploy the Deep Q-Network model can follow

the methodology in this paper and do so in the cloud.

Next, this thesis used higher volumes of data than other papers had used in their research.

By leveraging big data tools like Apache Spark, hourly financial data was collected and analyzed

instead of daily data, and millions of Tweets were used for sentiment analysis where other papers

examined only thousands.

Finally, the vast majority of research on cryptocurrency markets were written during a strong

bull market. Although there had been occasional price corrections (e.g. January 2018, March

2020, May 2021), cryptocurrency prices had until recently trended upwards, meaning that most

trading algorithms developed would perform well on average, regardless of actual algorithmic

merit. Given the recent market crash from November 2021 to date (reaching 24-month lows in

23

June 2022), one goal was to see if a Deep Q-Network model could still be profitable in a recession

economy.

24

3 Methodology

3.1 Hardware/software environment

Two distinct cloud environments were used in this project – one to prepare the data, and another

to train the machine learning model.

Environment 1

• Hosting Service: Microsoft Azure

• Operating System: Ubuntu 18.04 LTS

• Software: Databricks Runtime 10.4 LTS

• Cluster configuration:

– Mode = Standard

– Worker Type = Standard D12 V2 (28 GB memory, 4 vCPU cores) [min workers 2,

max workers 8], autoscaling enabled

– Driver Type = Standard D12 V2 (28 GB memory, 4 vCPU cores)

• Python Version: 3.8.10

• Spark Version: 3.2.1

• Spark NLP Version: 4.0.2

Environment 2

• Hosting Service: Microsoft Azure

• Operating System: Ubuntu 20.04 LTS

• Virtual Machine configuration: Standard NC6s v3 (112 GiB memory, 6 vCPU cores, NVIDIA

Tesla V100 GPU)

• Python Version: 3.10.2

• EViews Version: 12, July 19 2022 build

• Tensorflow Version: 2.9.1 (GPU distribution)

The first environment served to collect, clean, and process the big data used as input. It was

also used to run Spark NLP sentiment analysis and Granger causality analysis between Ether

price data and social media sentiment. Databricks software was deployed in Microsoft Azure’s

cloud to create a cluster of virtual machines and manage Spark jobs. See Azure Databricks Setup

in the Appendix for detailed instructions on how set up this environment in Azure.

25

The second cloud environment was used to train and test the DDDQN model and for Granger

causality testing. A single GPU-attached Microsoft Azure virtual machine was used. The reason

data collection and processing were performed in a separate environment from training was

simply for cost management; DDDQN network training with Tensorflow would not benefit from a

distributed Spark workflow, and maintaining a GPU cluster with Databricks was more expensive

than provisioning a single GPU-attached virtual machine.

3.2 Cryptocurrency selection

Selecting an appropriate cryptocurrency was an important caveat of this project. Ultimately,

Ether (ETH) was selected for this research, which was the best option based on my three-pillar

selection framework. The options were main cryptocurrency coins (Bitcoin and Ether), mid-sized

coins (e.g. Tether, Binance Coin, XRP, Cardano), or one of many smaller start-up coins.

The first feature of my selection framework was that the cryptocurrency had significant trad-

ing volume with reasonable variance. Many smaller coins simply did not have enough purchases

and sales to show consistency in hour-by-hour price changes. The inherent variability with low

volume trading would have made training a reinforcement learning model unstable. On the flip

side, stable coins that tracked the US dollar were also not interesting for research (Tether and

USDC for example), since their price was pegged to an existing asset with limited variance that

did not fluctuate with supply/demand of the cryptocurrency itself. Of the two large coins, Ether

and Bitcoin, Ether displayed more stability that Bitcoin during cryptocurrency market price

shocks. A more stable price graph would likely result in better Deep Q-Network learning.

The second feature was that there was sufficient real social media discussion to establish

statistically resilient and accurate trends in sentiment. One of the biggest issues discovered

exploring alt-coins was that it was difficult to verify the veracity of Tweets. From anecdotal

experience, it seemed that smaller start-up coins had a much more vocal positive social media

following – Reddit’s cryptocurrency subreddits for example were inundated with daily posts

about new coins hitting the market, often with strong sales pitches emphasizing reasons to

buy them. Unfortunately, many of these coins were tools for malicious actors to exploit new

cryptocurrency investors, as the coins had no real market value. Their prices were artificially

inflated by intense buying by a small number of people, followed by a rapid coordinated sell-off

by the majority wallet holders. (Liebau & Schueffel, 2019) These malicious actors used bots and

automated scripts to post positive messages about their scam coins. For this reason, smaller,

newer coins were not considered. Further research could extend the sentiment analysis portion

of this thesis to predict which coins are scams and which have merit (with real people discussing

them on social media rather than bots). Bitcoin and Ether both had the largest collections of

social media posts on Twitter, making them prime candidates for research.

The last pillar of my selection framework was to select a cryptocurrency with academic merit

to research. Although mid-sized coins fit the previous two criteria, their long-term success was

questionable. Longer standing coins with a higher likelihood to remain successful were more

26

interesting should this research be used in the future. Of the two largest coins, Bitcoin and

Ether, the latter is traded on the Ethereum network, which has more usability that Bitcoin by

natively supporting smart contracts. Further differences between the two cryptocurrencies were

well-described in “An Overview of Ethereum & Its Comparison with Bitcoin” (Jani, 2017). In

short, I believed that Ether had a stronger value proposition than Bitcoin due to its higher appli-

cability, and as such would become more valuable in the long term. Lastly, most academic papers

that researched cryptocurrency defaulted to Bitcoin. This thesis provided a new perspective on

the huge cryptocurrency market by focusing on another, similarly large but under-researched

cryptocurrency.

3.3 Financial data collection

Collecting the historic prices of Ether was straightforward as there were native Python packages

that allowed historic price APIs to be queried for this information. The open-source Historic-

Crypto package by David Woroniuk (Woroniuk, 2021) was used, which queried the Coinbase Pro

API for hourly price data of Ether. For each time step, the data contained the opening price,

closing price, high price, low price, and volume. All the features were kept, as they all had merit

as input to a neural network. The open and close price were valuable to identify a trend in

intra-hour pricing, the high and low price summarized the variance within each hour, and the

volume could itself be a valid predictor for future price.

3.4 Social media text collection

Apache Spark allowed data processing to be scaled across multiple virtual machines, significantly

speeding its performance especially with a large dataset. First, Twitter data was collected. There

were two approaches that could be used for this: the official Twitter API, or a third-party Python

scraping library like snscrape or Twint. The official Twitter API was significantly limited in the

number of Tweets that could be queried without an application for Academic Research, and was

also limited only to recent Tweets (generally the last 7 days). On the other hand, a scraping

solution was much slower at collecting data, since it mimicked a human scrolling a Twitter search

and could only collect Tweets as it virtually scrolls. The data returned was also missing some of

the richer metadata that the official Twitter API included in its responses.

Ultimately, the Academic Research level of access to the official API was the best option, as

it allowed for the full archive of Tweets to be queried, and 10 million Tweets to be collected per

month. Important to note however is that the process of applying for and receiving access took

many weeks, and approval of the request was not guaranteed.

With the authentication keys for Twitter’s V2 API endpoints, the Tweepy library was used

to query English language Tweets containing the keywords (#ETH OR $ETH OR Ether OR

Ethereum), filtered from January 1, 2017 00:00, to July 18, 2022 00:00. This range was specifically

selected as it represented the highest volatility and volume in Ether trading (pre-2017, Ether was

27

relatively unknown and stable in price, which would not have significantly contributed to training

a model or provided any valuable insights from reinforcement learning). Collecting these Tweets

took a significant amount of time as the API was limited to 1 request per second, with a maximum

of 100 Tweets returned per request. There were over 145 million Tweets in the selected period,

so the Python script was configured to query a set representative proportion of Tweets per hour,

with approximately 5 million Tweets collected in total. This meant that 4% of the Tweets

each hour were collected. In order to ensure there was enough data in each hour of the data, a

minimum number of Tweets to collect was set to 100. This meant that between 2018 and 2020,

when Ether was relatively unpopular, a large enough sample of Tweets was still collected for

accurate sentiment analysis. In total, 5,675,203 Tweets were collected.

After running the API querying script for around 28 hours, the Tweets were exported into

a UTF-8 encoded CSV file. Although other data format types including parquet files allowed

for smaller file sizes, interoperability was the key focus when exporting data to allow different

software to visualize results, where nonstandard file types may have been unsupported. The

CSV file was loaded into the Databricks FileStore directly via the Azure Blob Storage interface

(to circumvent the Databricks 2GB local I/O API’s 2GB file limit), then processed from UTF-8

encoded strings to Python datatypes using the Abstract Syntax Trees standard library. Once

completed, the Tweets and their metadata were loaded into Spark dataframes using PySpark,

with the following schema displaying the data and metadata retained:

Figure 3: Spark Dataframe schema for Twitter data

See the Appendix for the output displayed when calling Pyspark’s show() method on the

dataframe.

28

Ultimately, only the aggregate sentiment per hour and number of Tweets per hour were used

as features for the DDDQN, with the remaining metadata used for exploratory analysis and data

visualization.

3.5 Sentiment analysis

There were many different NLP model architectures to select among for sentiment analysis, but

the focus of this research was to apply a state-of-the-art method in order to achieve the most

accurate results for this research. Cutting edge NLP models natively supported by Spark NLP

primarily fell into one of the three categories: Bidirectional Encoder Representations from Trans-

formers (BERT) and BERT extensions (ALBERT, RoBERTa, DistilBERT, Universal Sentence

Encoder with CMLM), XLNet, and ELMo. Ultimately, a BERT model fine-tuned on financial

communication text, named FinBERT (Huang, Wang, & Yang, 2020) was selected, as it was

expected to yield the highest relative performance given its pre-training dataset.

BERT is an NLP pre-training model created by Google employees that achieved state-of-the-

art performance when released. It serves as the foundation for many of the more complex NLP

algorithms achieving state-of-the-art results today. It uses a transformer-based machine learning

technique, created in 2018 and formally published in 2019 (Devlin, Chang, Lee, & Toutanova,

2019)

From the abstract of their paper: “Unlike recent language representation models, BERT is

designed to pre-train deep bidirectional representations from unlabeled text by jointly condition-

ing on both left and right context in all layers. As a result, the pre-trained BERT model can be

fine-tuned with just one additional output layer to create state-of-the-art models for a wide range

of tasks, such as question answering and language inference, without substantial task-specific ar-

chitecture modifications. BERT is conceptually simple and empirically powerful. It obtains new

state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE

score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute

improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement)

and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).”

Since its development, BERT had become ubiquitous in the NLP space for both academic

and professional application. Google announced on Twitter in October 2019 that it had begun

using BERT for US English web searches (Google-SearchLiaison, 2019b) and posted another an-

nouncement December the same year that BERT was rolling out to over 70 languages worldwide

(Google-SearchLiaison, 2019a).

BERT’s architecture differs quite significantly from previously-preferred RNN models. At

its core, BERT is a set of Transformer encoder neural network layers (Vaswani et al., 2017),

each with multiple self-attention “heads” (terminology used in the original paper). Transformers

are novel neural network models that can process words in relation to all the other words in a

sentence, rather than individually in sequential order. BERT models can therefore consider the

full context of a word by looking at the words surrounding it.

29

Before transformers, neural networks usually processed language by creating vector-space

representations (e.g., word2vec based on “Efficient Estimation of Word Representations in Vector

Space” (Mikolov, Chen, Corrado, & Dean, 2013)). Reading one word at a time, RNNs must

perform multiple steps to make decisions that depend on words far away from each other, and

prior research has shown that the more such steps decisions require, the harder it is for a recurrent

network to learn how to make those decisions. (Devlin et al., 2019). Sequential training like this

also does not benefit from the significant speed advantages of GPUs and TPUs which excel in

parallel floating-point processing.

Transformers on the other hand process text data all at once, with a small number of iteration

steps. At each step, a transformer model uses a self-attention mechanism which directly models

relationships between all words in a sentence, regardless of their position. This combats RNN’s

issue with finding connections between words far away in a sentence. For example, suppose a

BERT model is fed the sentence “The player threw the baseball at the pitcher”. To decide that

the word “pitcher” is referring to the position on a baseball team and not a receptacle for water,

the transformer model can learn to immediately pay more attention to the word “baseball” and

make this decision in a single step.

To compute the representation of a given word, the transformer compares it to every other

word in the sentence. The result of these comparisons is an attention score for every other word

in the sentence. Taking the previous example, these attention scores determine how much each of

the other words should contribute to the representation of “pitcher”. “Baseball” would receive a

high attention score, while “threw” would not. The attention scores for each word in the sentence

are then used as weights for a weighted average of all words’ representations. This is then fed

into a fully-connected neural network to decide a new representation for “pitcher”, showing that

the sentence is talking about a baseball pitcher.

In a BERT model, each self-attention “head” of the transformer encoder layers computes key,

value, and query vectors for every input token in a sequence of words. Then, as mentioned, it

creates a weighted representation of the input. The outputs of all heads in the same layer are

combined and run through a fully connected layer, skip connection (to skip over some layers of

the network), then the layers are normalized. As the FinBERT model used in this paper was

trained additionally on financial text data, additional fully connected layers were added on top

of the final encoder layer.

The base English-language BERT models used 12 encoders with 12 bidirectional self-attention

heads and was pre-trained from unlabeled data extracted from two sources. The first is BooksCor-

pus, a collection of 800 million words extracted from a large collection of free novel books written

by unpublished authors (Zhu et al., 2015). The second is English Wikipedia with 2,500 million

words (Devlin et al., 2019). As previously mentioned, FinBERT extends BERT’s training corpus

with financial communication text from the following three financial communication corpus:

• Corporate Reports 10-K & 10-Q: 2.5 billion tokens

• Earnings Call Transcripts: 1.3 billion tokens

30

• Analyst Reports: 1.1 billion tokens

As the application for the model in this thesis was sentiment analysis, the FinBERT-tone release

of the model was selected, which further fine-tunes the FinBERT model on 10,000 manually

annotated (positive, negative, neutral) sentences from analyst reports, achieving superior perfor-

mance on financial tone analysis task. Because it was pretrained on financial text, many social

media posts with positive or negative sentiment about price movements were more accurately

captured.

While training a custom BERT model would of course have been possible, finding a labelled

dataset (or labelling one) using cryptocurrency Tweets was out of scope of this thesis. The focus

for this research was primarily about Deep Q-Learning for cryptocurrencies, so a pretrained

model was selected to avoid bloating the scope of this paper. Of the pretrained models available

in Spark NLP, FinBERT was the most popular and trained on the largest meaningful dataset

for this use case.

The FinBERT model was loaded into a Spark NLP pipeline so that the computation could

be performed across 8 worker nodes. The FinBERT pre-trained pipeline was used to process

the Tweet text and generate an overall sentiment score for each Tweet. The results were then

cleaned using Spark NLP’s Finisher() method. Distributed processing significantly reduced the

time it took to classify 4 million Tweets, to only 12 hours. Finally, the average sentiment and

Tweet volume columns by hour were summarized using PySpark’s SQL functions, making them

ready for Deep Q-Network training alongside financial data.

3.6 Feature engineering

The first step of feature engineering was to merge the financial data with the sentiment data.

Both were subset by hour with a timestamp as the index, so combining them was trivial. The

resulting features dataset for the model is summarized in the Results Analysis section.

Neural networks benefit from cleaned and scaled data. Although the data did not contain

any missing values, the scale was not standardized. As such, the last important step in feature

engineering was to use a Min-Max Scaler to scale the values of the features dataset in the range

[0, 1].

3.7 Granger causality

With hourly sentiment scores and hourly financial data collected, Granger causality testing could

be performed. The data was exported from Spark notebook to EViews, an industry-standard

and feature-rich software solution for econometric time series data analysis and processing. The

goal of causality testing was to understand whether sentiment has predictive causality for closing

price, or vice-versa. It was also to determine if the number of Tweets was caused by closing price

or sentiment, or inversely if either of those two variables were the cause for the number Tweets.

31

The data was explored in EViews to understand correlations between variables, which was

summarized in the results analysis. There were some important assumptions that must have been

considered true before pairwise Granger causality tests could be performed: first, variables were

stationary, and second, that they were linearly cointegrated. The latter assumption was inherent

since the closing price and Tweets are about the same subject, Ether. The former assumption

required some data manipulation before the time series could be considered stationary.

As a precursor to this methodology, it was important to understand unit roots, and what

they meant for stationarity. Unit roots are generalized in this diagram:

(Cochrane, 2015)

Figure 4: Effect of a unit root in a time series after a shock

A unit root is a feature of stochastic processes, where the process has a unit root if 1 is a

root of the process’s auxiliary equation. A detailed explanation of unit roots and the reason why

they suggest non-stationary data was outside the scope of this thesis; for a thorough explanation,

consult (Baumol, 1970).

There are two tests that can be done to ensure stationarity by considering a unit root, which

approach the problem from two different angles:

1. The Augmented Dickey–Fuller (ADF) test (Dickey & Fuller, 1979), whose null hypothesis

is that the time series has a unit root (which means the data is non-stationary). The ADF

statistic computed during the test is a negative number, where the more negative it is,

the stronger the rejection of the hypothesis that there is a unit root. In order to ensure

stationarity in the data, the goal therefore was to reject the null hypothesis with a

p-value close to 0. 5% was used as the alpha level for statistical tests, meaning that the

alternative hypothesis of stationarity was considered at the 95% confidence level if the

t-statistic from the test was less than the 5% critical value.

2. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski, Phillips, Schmidt, &

Shin, 1992), whose null hypothesis is that the time series is stationary (with the alternative

that the time series has a unit root). With KPSS, the goal was to consider the null

hypothesis with a p-value far from 0, once again using a 5% alpha level.

32

The ADF and KPSS tests complemented each other when testing for stationarity. If the ADF

test did not find a unit root, but the KPSS test did, the series was difference-stationary. If the

KPSS test did not find a unit root, but the ADF test did, the series was trend-stationary. In

both cases, taking the first-order differences and repeating the tests was a solution.

Although anecdotally clear the data was not stationary from viewing the plotted time series,

the tests were used for numeric verification. Unsurprisingly, the tests failed to show stationarity.

To make the data stationary, the first-order differences were taken of the closing price, sentiment

scores, and number of Tweets, after which the tests successfully passed. Results from this testing

can be found in the Appendix. EView’s pairwise Granger causality tests were then performed

on the three variables.

With causality testing complete, the next step was to use the data as training input for deep

reinforcement learning and build an algorithmic trader.

3.8 Trading rules

Many applications of algorithmic trading for stock market portfolios grant a trading agent a

predetermined starting balance and trade until that balance is exhausted. This is a realistic

approach when stocks are sold in single units at a fixed price per unit. While cryptocurrencies

can be purchased in any fractional amount, the implementation in this thesis still treated a

“unit” of cryptocurrency as indivisible. For this reason, a starting balance of $100 was included,

and the trading agent was allowed to purchase and sell as many units of cryptocurrency as it

desired until it reached the end of the time series or ran out of balance.

The next decision was to grant a reward to the trading agent only during the sell action. This

meant that purchasing a unit effectively granted a reward of 0, and selling the unit returned either

a positive reward (if the price the unit was purchased at was less than the current market price),

or a negative reward (in the contrary case). From initial testing, it was found that training the

Deep Q-Network using this approach was much more stable.

Next, the action space of the agent was limited to only three options: Buy, Hold, or Sell.

In this way, the agent could only buy or sell a single unit of Ether at each time step. A more

complex Deep Q-Network could have increased the action space by 2n by allowing the agent

to buy or sell n number of units. Alternatively, if the goal was also to decide how much of a

cryptocurrency to buy or sell at each time step (instead of the arbitrary unit used here), model-

based acceleration Deep Q-Learning (Gu, Lillicrap, Sutskever, & Levine, 2016) or actor-critic

reinforcement learning (Lillicrap et al., 2015) allow for modeling in a continuous action space.

However, the complexity of the environment would likely prevent the Q-Network from finding

an effective trading strategy.

If a training episode was completed with inventory left over, the value of the inventory was

added to the overall reward from the episode by “selling” all the units at the market price of the

cryptocurrency in the last time step. The added value to the balance was therefore the market

price for those remaining units, minus the sum of their purchase prices.

33

January 1 2017 00:00 to December 31 2021 23:59 was used as the training data period.

Before 2017, the price of Ether was quite stable and low, with very few Tweets referencing Ether

(generally less than 100 per hour). Its relative unpopularity and slow price movement would

likely not have been valuable inputs to the neural network. January 1 2022 00:00 to July 21 2022

23:59 was then used as the testing range. Although it was a fairly small range, it included a high

amount of variation, and provided an accurate window to gauge the performance of the model.

Some Deep-Q-Network applications allow the agent to choose an action that the environment

does not permit, and sets the reward to 0 for that action. Instead, the trading agent’s action

set was limited based on the agent’s inventory. If the agent’s inventory of Ether units purchased

was 0, it was prevented from selecting the sell action, even if the neural network determined it to

be the most profitable. This was a closer representation of a real-life trading agent, who rather

than receiving 0 reward for trying to sell something they did not have, could not have done so

in the first place. The inventory of the agent, denoted as I, was a first-in-first-out model, where

units of Ether recorded in the inventory were sold in reverse order of purchase. This meant that

the first unit of Ether sold was always the most recent unit purchased.

3.9 Experience replay memory

Experience replay memory enhanced Deep Q-Learning by improving how the weights of the

neural network were updated based on past experiences. As previously discussed, Deep Q-

Learning uses past combinations of states, next states, rewards, and actions (“experiences”) to

predict optimal future states and actions. At each time step t, the trading agent took an action

based on its current state, was granted a reward (either positive or negative depending on the

action taken), and the environment moved to the next state if it was not a terminal state. These

four elements comprised an experience to store in memory, which was used to train the trading

agent’s neural network. After making a trading decision, the trading agent’s online network

was updated to better predict the optimal decision. To do this, the agent’s replay memory was

sampled and historical experiences were used to estimate the value of the best action to take,

adjusting the weights of the network accordingly.

In the code, the trading agent’s experiences were stored at each time step in numpy arrays

within the ExpReplay class. Although Python natively supported the deque datatype for similar

memory buffer applications, numpy arrays tended to be faster, more robust solutions for storing

regularly-accessed data in a Tensorflow workflow. Mathematically, the agent’s experience at time

t could be denoted as the tuple et:

et = (st, at, rt+1, st+1, dt) (11)

et contained the state of the environment, st, the action taken from that state, at, the reward

given to the agent as a result of the state/action pair, rt+1, the next state of the environment,

st+1, and whether the experience is a terminal state, dt. The experiences were stored in replay

34

memory for later sampling, up to a maximum memory size (denoted as N). This memory size

cap prevented the trading agent from sampling experiences that were too old and which may

have lost their predictive importance.

3.10 DDDQN model architecture

The next two pages show a detailed diagram of the DDDQN model used in this thesis, and the

Tensorflow layers of the online network as summarized by the compiled model (in the first trial,

without sentiment features).

35

Figure 5: Dueling Double DQN model architecture

36

Figure 6: Keras summary() method called on the compiled online network

The DDDQN started with an input layer containing 8 nodes (one per feature of the state).

The input nodes accepted data as an (64, 48, k) dimension numpy array, where 64 represented

the batch size, 48 represented the window size and k was the number of features (5 without

sentiment data, and 7 with sentiment scores and number of Tweets included). The data was

then passed to a 128-node densely-connected layer, followed by a flattening layer to eliminate the

second dimension. This meant that the data was now structured as a (64, 6144) matrix, which

was necessary to allow the model to predict the value of actions taken at the current time step

only, and not for each time step of the 48-hour window.

Next, the flattened data was passed through two 256-node dense layers, with a dropout layer

of 0.5 after each one (a regularization method to prevent overfitting). Then, the network was split

into the dueling architecture, where both branches had an additional 64-node dense layer. The

state value stream terminated at a single-node output layer (representing the value of the state),

and the action stream terminated at a three-node output layer (where each node represented the

37

value of an action in the action space: buy, hold, or sell).

Finally, as explained in the introduction to Dueling DQNs, the state value and action values

were linearly combined to create a single expected q-value for each action.

The relatively high number of hidden layers and nodes of the DDDQN were incorporated to

try to capture small nuances in highly-volatile data. Additionally, because the dataset was so

large, it was unlikely that the neural network would memorize (and thus overfit) the data.

3.11 DDDQN parameters

DDDQNs have a number of hyperparameters that can be tweaked to change learning perfor-

mance. Many of these were explained in prior sections of this thesis.

First, the discount rate γ was set to 0.95. As a reminder, the discount rate was an exponential

function that decided how much future rewards effected decision choices. When γn = 0.5, the

reward at time t + n + 1 was half as important as the reward at t + 1 (the immediate reward).

For example, if γ = 0.9, this was nearly 7 steps, but with γ = 0.99 it was closer to 70 steps.

This meant that for γ = 0.9, the reward in about 7 steps was half as important as the immediate

reward, but for γ = 0.99, the same was valid for about 70 steps. Because the dataset was quite

granular with small time steps (one hour), and significant changes in cryptocurrency markets

generally happened over multiple days, a relatively high γ rate of 0.95 was selected. It was

important to avoid setting it any higher however, as the high variability of markets meant that

immediate rewards remained more important than future rewards as it was difficult to predict

what the future rewards may have been. The agent was therefore empowered to select an action

that generated more immediate value, unless it was certain that future rewards outweighed this

benefit.

Next, ϵ started at 1 (typical in most reinforcement learning applications) but decayed expo-

nentially until it reaches its minimum value in the final time step of the final episode. It therefore

decayed more quickly in earlier episodes before slowing to the minimum ϵ value of 0.02. Because

the model could never have perfectly predicted future states and rewards, it always had the

opportunity to select an exploration instead of exploitation action. Given the intense volatility

of cryptocurrency markets, it was better to ensure that the model could continue to experiment

even after ϵ had converged on a minimum value.

The window size was set at 48 time steps, meaning that the neural network was fed the last

two days of data at each training step. A smaller window size would have been applicable for daily

data, but because hourly data was being used, a larger window was more appropriate. Because

cryptocurrency market trends tended to propagate over days rather than hours (barring sudden

shocks), having access to a larger window of time led to more effective learning. Increasing the

window size further could have been detrimental however, as the high variability in historical

data may have prevented the neural network from discovering meaningful patterns or trends in

too much noisy data. A larger window size may have been effective in a more complex densely-

layered neural network, and could be explored in future research.

38

N was set to 100000 as the size of the replay memory, since experiences from trading did not

lose significant predictive importance over time. As such, it was not necessary to significantly

limit the number of past experiences the model could learn from.

In neural network applications, the learning rate for gradient descent scales the amount

network weights are updated in order to minimize a loss function. The learning rate for the

model was set at 0.01, which after some naive testing at different magnitudes provided the best

results. It was necessary to ensure that the data would converge without becoming stuck at a

local minimum.

As suggested in many Deep Q-Network papers and extensions, the Adam loss function was

used, details for which can be found in the source paper “Adam: a method for stochastic opti-

mization.” (Kingma & Ba, 2014). In short, it is an improvement on stochastic gradient descent

used to optimize an objective function, which became popularized in machine learning appli-

cations due to its simplicity and speed. Note that the original Deep Q-network paper used

stochastic gradient descent.

Finally, the update interval for the target network was set to 96 time steps, meaning that the

weights of the online network were copied to the slower-moving target network after it had seen

four days of data.

3.12 DDDQN training process

With the online and target neural networks defined, the Python training models could then be

fed data. A trading agent object was created using the aforementioned parameters, which started

with a balance of $100 (an arbitrary figure, selected as a “stop losses” number to prevent the

trading bot from making a long series of poor decisions). Then, the agent began processing each

row of data in the dataset. Because the window size was 48, the first row of data was duplicated

48 − t times when t < 48, where t was the current time step. This gave the agent a synthetic

“history” for its window that assumed the price of Ether was stable before the first row of data.

The python script looped through the data 30 times, each step representing an episode of

training. The procedure in each loop was as follows:

1. The trading agent observed the state of the environment, st (the row of data corresponding

to time step t and the preceding 48 rows)

2. The trading agent chose an action to take. A random number x between [0, 1] was gener-

ated: if x ¡= ϵ, a random action was selected. On the other hand, if x > ϵ, the state at

time t was fed to the online network for prediction of q-values for each action; the agent

then chose the maximal action. In either situation (x > ϵ or x <= ϵ), if the agent had an

inventory I > 0 (meaning there was at least one unit of cryptocurrency the agent had pur-

chased but not yet sold), the action space was [0, 1, 2] where 0 represented the sell action,

1 was the hold action, and 2 was the buy action. If the inventory was empty, the action

39

space was shrunk to [1, 2]. Action selection began randomly, but became more informed as

ϵ decayed and the trading agent learned more about the environment.

3. The trading agent observed the next state, st + 1, which was required to train the neural

networks based on Bellman equation estimations (see equation (7))

4. The trading agent executed the selected action:

(a) If the action was 0, sell, one unit of inventory I was removed. A reward r was granted

to the trading agent computed as the current close price of Ether at time t minus the

price for which the unit of Ether was purchased. If the trading agent bought Ether at

$1 per unit at some time t − n, and the close price at time t was $1.20 per unit, the

reward was be $0.20.

(b) If the action was 1, hold, no change was made and the reward was 0.

(c) If the action was 2, buy, the agent added one unit of Ether to its inventory I and

recorded its price. As discussed in Agent Rules, the reward for this action was 0.

5. The reward was added/subtracted from the agent’s balance. If the balance was below the

current closing price of Ether at time t, the simulation was considered to have reached a

terminal state where the trading agent could no longer buy new units of Ether. In this

circumstance, the training loop was exited and the “done” flag is set to True.

6. The trading agent updated its replay memory with the state, action, reward, next state, and

done flag. Remember that the tuple describing an experience was denoted as (st, at, rt+1, st+1, dt),

where the parameter d was added as a boolean representation of terminal states. The rea-

son was simply to distinguish the last state before a trading agent “lost” so that it would

learn not to repeat the same errors. The experience was stored in numpy arrays, using

a pointer to fill the next available slot in memory. Once the number of items in memory

reached N (the maximum number of items), it began overwriting its earliest memories.

7. The trading agent trained its neural networks on its experience:

(a) If the number of items in memory did not yet meet the batch size, training was skipped

to avoid learning from data that did not yet exist (this occurred in the first 64 training

steps).

(b) If the training step was a multiple of 96, copy the weights of the online network to

the target network.

(c) The replay memory was then sampled for a batch of data (64 entries). For each item

in the batch, the online network was trained by doing the following:

i. The q-values were predicted for the next state st+1 of the sampled memory using

both the online and target networks.

40

ii. The maximal action for the next state st+1 was selected based on the q-value

outputs of the aggregated a and v streams of the online dueling Q network using

an argmax function to find the index of the best action. (n.b.: the online network

was not finding the value of the action, simply which was the best action.

The target network was later used to calculate the value of the maximal action.)

iii. The q-values were predicted for the current states in the sampled memory using

the online network.

iv. The loss function was computed according to equation(8). The results from this

prediction were edited by selecting the q-value associated with the action actually

taken, and updating the predicted q-value with the true q-value. To do this,

the actual rewards received (rt+1) were added to the predicted q-value of the

next state st+1 according to the target network, discounted by γ. If the sampled

memory was a terminal memory, the future rewards were multiplied by 0 to cancel

them out.

v. This updated batch of data was then fed to the online neural network to update

its weights via back-propagation. To better understand this step, review the

equations in What is Q-learning and What is Deep Q-Network Learning from the

Introduction.

8. Finally, the agent is transitioned to the next state and the process is repeated until the

trading agent reaches one of two stop conditions:

• The trading agent reached a terminal state where its balance dropped too low

• The time series reached the penultimate time step.

9. If there were any remaining units of Ether in the inventory I when a stop condition was

reached, the units were sold at the current closing price and their value added to the balance

from the episode. The balance was updated with the market price for those units, minus

the sum of their purchase prices. See Trading Rules for more details.

Once the agent had trained on 30 episodes of training data, it was then fed the testing set of data

and repeated the same process as training, without steps 3 or 7, and with ϵ set to 0 so that the

agent always chose the greedy action. To build a suitable collection of results from testing data,

this whole process was repeated for ten runs (each run with a new set of 30 training episodes

and a new trading agent).

41

4 Results Analysis

4.1 Data exploration

Before beginning statistical analysis and reinforcement learning, it was important to understand

the data in more depth. As previously mentioned, 5,675,203 total Tweets were collected, about

3.5% of the total Tweets. This gives some context to the scale of big data available on Twitter.

4.1.1 Ether price data

Starting with summary statistics for the Ether hourly prices:

low high open close volume

0 8.25 8.30 8.26 8.30 1610.315200
1 8.30 8.53 8.30 8.47 3139.987090
2 8.45 8.60 8.45 8.59 3503.826085
3 8.49 8.60 8.58 8.53 1693.233010
4 8.34 8.54 8.53 8.38 2223.611356

Table 1: Pandas head() method called on the Ether price dataframe

low high open close volume

count 48647.000000 48647.000000 48647.000000 48647.000000 48647.000000
mean 949.099156 963.295755 956.512399 956.546269 7841.863990
std 1179.649125 1195.776955 1188.051274 1188.050337 9900.998488
min 0.100000 8.160000 8.090000 8.100000 0.568451
25% 183.665000 185.695000 184.710000 184.715000 2496.999621
50% 327.700000 332.400000 330.310000 330.340000 4818.732141
75% 1331.635000 1357.740000 1345.720000 1346.585000 9273.992657
max 4835.150000 4867.810000 4849.040000 4849.040000 179904.541935

Table 2: Pandas describe() method called on the Ether price dataframe

Price data was expressed in USD, with volume in thousands. Based on the tables above,

there was intense variability, as expected given the well-known volatility of cryptocurrency. The

closing price is plotted on the next page.

42

Figure 7: Ether hourly price

43

4.1.2 Ether Twitter sentiment scores

Continuing with summary statistics for the Ether hourly social media scores:

Average Sentiment Score Number of Tweets

0 0.000000 32
1 0.000000 19
2 0.052632 38
3 0.000000 22
4 0.000000 40

Table 3: Pandas head() method called on the Ether sentiment scores dataframe

Average Sentiment Score Number of Tweets

count 48647.000000 48647.000000
mean 0.084733 2986.499949
std 0.055137 4566.850529
min -0.820000 19.000000
25% 0.050000 481.000000
50% 0.080000 836.000000
75% 0.110000 2746.000000
max 0.690000 30809.000000

Table 4: Pandas describe() method called on the Ether sentiment scores dataframe

Much like the price data, there was intense variability in the number of hourly Tweets.

However, sentiment seems relatively neutral – given that sentiment scores were measured in the

range of [−1, 1], a mean of 0.08 and a standard deviation of 0.06 shows that Twitter opinions

were mildly positive but rarely strong in any direction. The outliers were notable however – there

was one hour in the data where Twitter users collectively voiced significant dislike for Ether, with

a -0.8 sentiment score. On the flip side, there was at least one period with significant support

as well, with a score of 0.69. The hourly sentiment scores were quite noisy however, so these

outliers likely do not have strong predictive importance.

Although an adequate sample of Tweets was selected per hour to gauge sentiment, there was

intense hourly variation in social media sentiment. This was rather unexpected – I had predicted

that the Twitter sentiment would be much more stable and follow the price of Ether. Instead

the data seems random, and required statistical tests to understand correlation and causality.

The hourly social media sentiment scores and number of Tweets are plotted on the next two

pages in figures (8) and (9). To reduce some of the noise and outliers, a 2-day rolling average

was overlaid on the plots. Exploration into the outliers of figure (8) show that there was often

one or more highly-followed social media influencers sharing an opinion about Ether, which was

quickly retweeted within the same hour.

Next, the two graphs were combined to visually understand any correlation. The sentiment

44

scores and price were scaled to the same axis, then plotted together, using the 2-day rolling aver-

age for sentiment scores to reduce noise. As shown in figure (10), no correlation was immediately

visible. This did not necessarily mean there was no Granger causality however – because the

first-order differences needed to be taken to transform the time series data, there were deeper

hidden correlations.

The process was repeated, this time with the number of Tweets against the closing price, in

figure (11). It was much clearer that there was similarity in the data: it seemed that the shape

of the number of Tweets mimicked the closing price, but lagged behind by a few weeks.

In the last plot, the top 500 hours with positive and negative sentiment (smoothed with

the rolling 2-day mean) were overlaid onto the closing price, to understand visually if strong

negative or positive sentiment corresponded with a change in price. As shown in figure (12),

the strongest negative sentiment occurred around Ether’s inception, especially after the first

price drop. Examining the Tweets, it seemed that most users were unimpressed with the future

adoption of cryptocurrency after it began to fall in price, thinking that the short rise and fall

marked the end of the useful life of Bitcoin and Ether. Negative sentiment also occurred most

strongly around present day, where the beginning of a recession economy after Covid-19 and the

pullback of cryptocurrency markets added significant uncertainty among Ether investors.

The strongest positive sentiment on the other hand occurred a bit more sporadically after

Ether shot up in price in Q1 and Q2 of 2021. There, the strongest positive sentiment seemed

to appear right after a large spike in price. Looking at the Twitter data again, it showed that

investors succumbed to a few cognitive biases that manifested as strong positive social media

sentiment. Namely, participation bias (Hsieh & Kocielnik, 2016), where investors encouraged

each other to continue holding and purchasing Ether in the unfounded certainty that it would

continue to increase in price, the Bandwagon effect (Nadeau, Cloutier, & Guay, 1993) (also

known as group-think), where investors mimicked others regardless of actual financial merit, and

probability neglect (Kahneman, 2011), where investors believed (incorrectly) that the price of

Ether would continue to rise regardless of statistical likelihood.

45

Figure 8: Ether hourly Twitter sentiment scores

46

Figure 9: Ether hourly number of Tweets

47

Figure 10: Ether hourly Twitter sentiment scores plotted against closing price

48

Figure 11: Ether hourly number of Tweets plotted against closing price

49

Figure 12: Ether hourly number of Tweets with top positive and negative sentiment plotted against closing price

50

Finally, the correlation between variables could be explored. Listing pairwise correlations,

the close price was visibly correlated with the number of Tweets. However, sentiment scores were

not correlated with any other variable.

Figure 13: Correlation between number of Tweets, sentiment scores, and closing price

The first-order differences of all three variables were distinctly uncorrelated, as expected after

removing any trend component.

Figure 14: Correlation between the first order difference of the number of Tweets, sentiment
scores, and closing price

Given the general lack of correlation between variables, it was interesting to see that Granger

causality was still present.

4.2 Granger causality testing

As mentioned in the methodology, ADF and KPSS were used tests to establish stationarity in the

data. The results of the tests before and after taking the first order difference can be found in the

Appendix, in Figures (29) through (40). After differenciating the data to achieve stationarity,

pairwise Granger causality tests were run.

The null hypothesis that X does not cause Y was rejected for the closing price on Tweet

count, Tweet count on closing price, Tweet count on sentiment, and closing Tweet count on

sentiment. For all other relationships, no Granger causality was present.

51

Figure 15: Granger causality between the first order difference of the number of Tweets, sentiment
scores, and closing price

Breaking it down, the results conclusively show that closing price was not caused by sentiment

scores at the 95% confidence level; rather, the inverse was true. As the price of Ether fluctuated,

social media sentiment responded in turn. This meant that sentiment analysis, while a useful

to better understand Ether, likely did not have predictive power on its future price. Instead,

changes in price caused changes in score.

Next, relationships with Tweet counts were interesting. Tweet counts were Granger-caused

by closing price, meaning that changes in the price of Ether caused a change in the number of

Tweets. On the other hand, closing price was also Granger-caused by the number of Tweets,

meaning that a change in the number of Tweets could effectively predict a change in closing

price. This was an interesting two-way feedback loop between the variables; adding the number

of Tweets to the Deep Q-Network as a feature likely increased its performance if the neural

network detected and responded to this Granger causality. The number of Tweets Granger-

causing price changes supported the hypothesis discussed in the literature review where similar

results appeared for Bitcoin in (Shen et al., 2019).

Finally, Tweet counts and sentiment were, as expected, related by Granger causality. Because

sentiment Granger-causing Tweet counts had a p-value (0.1116) above the alpha level of 0.05,

null hypothesis was not rejected. On the the other hand, the number of Tweets did Granger-

causes sentiment. This meant that changes in sentiment score could be predicted by changes in

the number of Tweets, an interesting relationship. I postulate that more Tweets were usually

indicative of some big event in the market, which would have had a strong sentiment reaction,

thus promoting this Granger causality.

52

4.3 Deep Q-Networks

4.3.1 Twitter data omitted from feature input

Plotted below is a histogram of actions the agent selected during training. Only the last episode

was examined here as it had the lowest ϵ value. As a reminder, ϵ started at 1 and decayed

exponentially until the last time step of the final episode, meaning that actions were selected

mostly at random early in the training. The last episode showed the agent’s best action selection

decisions for the training data with an ϵ near 0.02. As shown in the figure, the agent primarily

chose to hold its position when given a choice between all three actions, which reflects similar

decisions of human traders.

Figure 16: Actions selected by the agent during training in episode 30 (no Twitter data)

Next, the inventory held over time was plotted in figure (17). The fact that the agent never

accumulated an inventory greater than 25 units suggested that it prioritized immediate rewards,

and was either unable to predict long-term price increases or believed that short-term rewards

were more beneficial to overall profit. The subsequent figure overlays the closing price of Ether

scaled on the same graph. It was difficult to spot clear trends in the data due to the fine

granularity of the x-axis. On a daily or weekly time scale, changes in inventory might have

become easier to correlate to changes in Ether price, but the rapid transaction speed made

inventory purchases and sales seem arbitrary. Figure (19) was perhaps the most important plot,

which shows how the portfolio value of the trading agent changed over time. It became clear

how the trading agent generated its profit: while it was able to capitalize on some mraket price

increases, it primarily avoided losing value during sudden drops. Clearly, the trading agent was

able to detect signals in the data for upcoming market downturns, and was able to mitigate them

appropriately. Finally, figure (20) shows the profits for each episode of the training data, plotted

against ϵ. Profitability is predictably low when the agent was exploring the environment with

random actions, but increased as epsilon decayed.

53

Figure 17: Inventory held by the agent during training in episode 30 (no Twitter data)

54

Figure 18: Inventory held by the agent during training in episode 30, plotted against Ether closing price (no Twitter data)

55

Figure 19: Portfolio value of time during training episode 30, plotted against Ether closing price (no Twitter data)

56

Figure 20: Profit of the agent for each training episode (no Twitter data)

57

The data in the figure (20) was derived from this table of training results:

Episode Cumulative Runtime (Hours) Profit (%) Epsilon

0 1.80 -18.3000 0.878
1 3.60 -3.2894 0.771
2 5.44 -4.2940 0.676
3 7.29 -34.6300 0.594
4 9.12 -13.2350 0.521
5 10.97 2.4500 0.457
6 12.83 -8.3400 0.401
7 14.72 -1.6000 0.352
8 16.62 1.2570 0.309
9 18.54 0.5300 0.272

10 20.49 2.9810 0.238
11 22.46 3.3140 0.209
12 24.43 4.5660 0.184
13 26.42 6.9120 0.161
14 28.41 5.1010 0.141
15 30.39 7.9940 0.124
16 32.42 12.5660 0.109
17 34.43 5.2430 0.096
18 36.43 4.7780 0.084
19 38.41 7.3460 0.074
20 40.42 18.8780 0.065
21 42.46 8.3470 0.057
22 44.51 16.3300 0.050
23 46.57 21.2590 0.044
24 48.70 12.5300 0.038
25 50.67 16.3670 0.034
26 52.58 18.3300 0.030
27 54.48 31.2020 0.026
28 56.40 28.3530 0.023
29 58.34 24.2520 0.020

Table 5: Training summary (no Twitter data)

With the trading agent fully trained, the Deep Q-Network could then be fed testing data,

with ϵ set to 0 so that the agent would always pick the action it believed would generate the

highest profit.

Figures 21 through 24 show for the first testing run, respectively, the actions selected by the

agent, the inventory held by the agent, the inventory held plotted against Ether’s close price

during the test period, and the portfolio value over time during testing. During the test set, the

agent chose the hold action more than training, and the maximum inventory size decreased to

16, but it was similarly difficult to understand how changes in inventory correlated to changes

in closing price due to the fine granularity of the time series. Figure (24 shows a similar result

for the testing set as the training set: the agent avoided losing value during sharp market losses,

58

but was unable to capitalize on moments of market recovery.

Figure 21: Actions selected by the trading agent during the first testing run (no Twitter data)

59

Figure 22: Inventory held by the agent during the first testing run (no Twitter data)

60

Figure 23: Inventory held by the agent during the first testing run, plotted against Ether closing price (no Twitter data)

61

Figure 24: Portfolio value over time during the first testing run, plotted against Ether closing price (no Twitter data)

62

The entire process was then repeated 10 times (training the agent for 30 episodes, then

running the trading agent on the testing data). The profits from each distinct run of the test

data was summarized in the table below:

Run Profit (%)

0 -24.968
1 -31.802
2 -22.628
3 -22.516
4 -49.915
5 -43.038
6 -42.399
7 -46.292
8 -30.465
9 -17.846

Table 6: Profit over 10 test runs (no Twitter data)

The mean profit from the trading agent trained without sentiment scores or Twitter volume

was -33.19%, but displayed strong variability with returns ranging anywhere from -49.92% to

-17.85%. These figures may have seemed unimpressive, but it was important to consider the

bear market of the testing set. The market’s overall performance during the testing period

was -53.47%, meaning that the agent effectively outperformed the market by 20.28%. Using

just historical price data, the Deep Q-Network was able to perform better than a buy-and-hold

strategy for the duration of the test set, showing its power as a decision-making support tool for

investors trading cryptocurrency in a bear market, and especially as a tool to avoid losses during

market price shocks.

The next step was to add sentiment scores and social media volume (number of Tweets) as

features, and re-run the 10 testing runs.

4.3.2 Twitter data included from feature input

Some descriptions in this section were skipped if figures were previously described.

The histogram of actions selected by the agent was nearly indistinguishable from the training

set with no Twitter data added, and as such, was not included here. Much like the figures in the

preceding section, plotting the agent’s inventory over time or against the closing price of Ether

was difficult to interpret, and such plots were also omitted here. Figure (25) shows the portfolio

value over time, plotted against the previous training data (with no Twitter features) and Ether

closing prices. Unlike the training without Twitter data, the agent seemed more susceptible to

sudden price drops, where the previous agent was more resilient. On the other hand, the trading

agent with Twitter data was much more capable of benefiting from price increases, and far

surpassed the trading agent without Twitter information during strong price increases. Figure

(26) shows the average profits for each episode of the training data against ϵ.

63

Figure 25: Portfolio value over time during training episode 30, plotted against Ether closing price (with and without Twitter data)

64

Figure 26: Profit of the agent for each training episode (with Twitter data)

65

The data from figure (26) was derived from this table of training results:

Episode Total Runtime (hours) Profit (%) Epsilon

0 2.03 -27.090 0.878
1 4.07 -10.230 0.771
2 6.15 -14.550 0.676
3 8.24 -4.515 0.594
4 10.31 -12.333 0.521
5 12.40 -6.923 0.457
6 14.50 5.340 0.401
7 16.63 -0.020 0.352
8 18.78 5.233 0.309
9 20.96 3.990 0.272
10 23.15 3.209 0.238
11 25.38 8.123 0.209
12 27.61 15.233 0.184
13 29.86 22.293 0.161
14 32.11 18.944 0.141
15 34.34 32.112 0.124
16 36.64 36.012 0.109
17 38.91 35.923 0.096
18 41.16 37.652 0.084
19 43.41 38.484 0.074
20 45.68 40.023 0.065
21 47.98 38.593 0.057
22 50.30 41.020 0.050
23 52.63 43.067 0.044
24 55.03 42.044 0.038
25 57.25 44.923 0.034
26 59.41 46.022 0.030
27 61.56 47.290 0.026
28 63.73 46.022 0.023
29 65.92 46.019 0.020

Table 7: Training summary (with Twitter data)

Moving on to the test set, figure (27) shows the portfolio value over time for the first testing

run, plotted against the first testing run of the agent with no Twitter data and the Ether closing

price. The agent exhibited similar behaviour as in testing – it was not able to mitigate price

drops as well as the agent without Twitter data, but was much more capable of generating

returns during short periods of market recovery.

66

Figure 27: Portfolio value over time during the first testing run, plotted against Ether closing price (with Twitter data)

67

The profits from each distinct run of the test data were summarized in the table below:

Run Profit (%)

0 -11.752
1 -7.665
2 -40.591
3 -10.338
4 -33.067
5 -18.681
6 -24.908
7 -13.523
8 -37.887
9 -23.981

Table 8: Profit over 10 test runs (with Twitter data)

The mean profit from the trading agent trained including sentiment scores and Twitter volume

was -22.24%, but once again displayed strong variability with returns ranging from -40.59%

to -7.66%. As a reminder, the market’s overall performance during the testing period was -

53.47%, meaning that the agent effectively outperformed the market by 31.23%. This was

a very promising result for an untuned Deep-Q Learning network, and showed that adding

sentiment and Twitter volume as inputs to the data improved the performance of the trading

agent by 10.95%. The improvement in profitability simply from adding sentiment scores and

social media volume suggested that these variables could likely be applied to many different

machine learning applications that predict cryptocurrency price movement. This made sense,

given the Granger-causality detected between social media volume and Ether price.

The results from this study highlighted the power of deep reinforcement learning in financial

markets. Practical applications of Deep Q-Learning can be developed and implemented as a

decision support system in a business context; business recommendations will be elaborated in

the next section.

68

5 Recommendations

Based on the findings of this thesis, some key business-level managerial recommendations were

developed for people interested in trading cryptocurrencies using Deep Q-Networks and sentiment

analysis.

First, the results showed that sentiment analysis and social media discussion volume were

effective predictive tools to understand the direction of cryptocurrency. Therefore, regardless of

the algorithm or machine learning model being used to predict price changes, this data is valuable

to include in input features. I would argue that sentiment scores and social media discussion

volume alone can be used as valuable decision-making tools because of their clear meaning for

managers.

Second, although Deep Q-Networks were shown to generate a positive returns, the perfor-

mance of the model was not exceptional. As such, managers who leverage Deep Q-Learning

should use the buying, selling, and holding signals of the network as inputs to decision-making

when accompanied by other analysis. Rather than relying entirely on the Deep Q-Network for

trading, augmenting trading decision using its output is a much more valuable application. Neu-

ral networks can be used to potentially find deep hidden patterns in data, in conjunction with

traditional fundamental and technical analysis which allow managers to see more visible trends.

It may also be valuable for a manager to look at the expected benefit of each action (buy, hold,

or sell) using the three-node output layer of the advantage stream rather than just the trading

signal alone.

Related to my previous recommendation, machine learning algorithms require tuning for

optimal results. Therefore, should a Deep Q-Network algorithm be implemented in a business

context, adequate time should be allocated to properly tune and test the model with a range of

hyperparameters and architectures. The same testing methodology described in this paper can

be used, but a more robust testing strategy should include a larger window of data to test on

(for example, using random slices of time to test model performance rather than a set slice at

the end of the time series).

Finally, it is important to address the black-box nature of ANNs. Although the results of a

neural network can be valuable, the reason why a neural network chooses to send a buying signal

over a selling signal for example can be extremely nuanced. Managers are therefore cautioned

from trying to identify patterns where they do not exist in the outputs of ANNs. In a real-

world context, many financial decisions must be justified due to attributes of the data, which

is impossible using an ANN that simply tells the investor what action to take. It should be

reiterated therefore the importance of using this research as a decision support tool, rather than

as a decision-maker on its own.

69

6 Conclusion

Overall, the results of the study were mostly on par with the hypotheses described during the

literature review, and this thesis successfully answered all the research questions presented in the

introduction. Granger causality was indeed present between variables, however it was the closing

price of Ether that predicted sentiment, not the other way around. The number of Tweets was

also shown to Granger-cause closing price and vice versa.

Deep Q-Networks are excellent models in environments with a small action space and where

future states are based on previous actions. However, the inherent variability of cryptocur-

rency markets and lack of control trading agents have on the market made Deep Q-Networks

an imperfect application. Whether or not the trading agent bought or sold a unit of Ether for

example did not change the price of Ether in future states. That being said, the objective of this

study was never to create the most profitable trading strategy, but rather to determine whether

reinforcement learning for financial markets merited future research through a proof of concept

model. In this sense, this thesis was successful in establishing a baseline approach researchers can

take to use sentiment analysis and reinforcement learning for financial market prediction. The

results of this study showed that DDDQNs have practical applications outside of academia, and

social media sentiment data and volume were found to be important features when predicting

cryptocurrency prices.

An important outcome from this study to highlight was its technical feasibility in a cloud-

based era. A decade ago, cloud computing was rarely used for personal research projects. Now,

the scale of the computations and data used in this thesis were only made possible by highly-

scalable and cost-effective cloud solutions offered by the likes of Amazon, Microsoft, and Google.

The Apache Spark workflow used to process over 2 gigabytes of Tweets for sentiment analysis

required a heavily-distributed network of machines that quickly scaled up and down as needed,

which was infeasible for individuals who cannot be expected to purchase and maintain this level

of computer hardware. Cloud computing has empowered individuals and small companies to

perform complex research and process big data in ways that were inaccessible a decade ago.

There are additionally some limitations in this study that could be explored more deeply in

future papers. First, the trading environment was over-simplified for the sake of building a proof

of concept model. As described in the trading rules section of the methodology, the agent was

restricted to buying or selling an individual unit of Ether at each time step. A more accurate

representation of reality would allow the agent to buy any number or fraction of Ether units

at a given time step, using more advanced Deep Q-Learning models or different reinforcement

learning techniques altogether.

Next, sentiment analysis was limited to data collected from English-speaking Twitter. This

introduced bias to the dataset by focusing only on opinions from mostly non-AMEA regions

where the predominant first or second language was English. Although ethical bias was not

especially relevant in this use case, it can be important to consider when conducting sentiment

analysis in more sensitive applications. Twitter data collection was also quite naive, by weighing

70

each Tweet equivalently, and counting retweets to emphasize more popular opinions. A more

tuned approach could use public Tweet metrics available in the Academic API (such as likes

and shares) to weigh the sentiment of popular Tweets more heavily when calculating sentiment

scores. This would likely promote clearer trends in the data and remove some noise.

Another limitation in the scope of this study was the time spent tuning the model. This thesis

served as a proof of concept to determine whether Deep Q-Networks could work as a decision

support system, and to decide whether the topic merited further research. As such, optimizing

the DDDQN architecture and parameters was not in the scope of this work. A necessary extension

to this work before implementation in a real business scenario would therefore be to spend the

appropriate time building and optimizing a high-performing DDDQN. An excellent continuation

to this thesis will be to tune the DDDQN in order to generate the highest possible profits.

Moving on to surprising results, it was primarily the lack of correlation between sentiment

and closing price that was unexpected. Although Granger causality was present, the shape of

the sentiment scores plot was unintuitively different from the closing price. It exhibited apparent

randomness at a first glance, requiring differentiation and deeper statistical analysis to discover

the causal link between sentiment and price. It was also surprising to see that the number of

Tweets had a stronger causal relationship on closing price that sentiment scores.

In summary, this paper demonstrated a novel application of deep reinforcement learning

for cryptocurrency price prediction using sentiment analysis as feature input, and established a

causal relationship between cryptocurrency price and sentiment, as well as between social media

conversation volume and cryptocurrency price. Further research can extend this work to optimize

and implement the DDDQN model using a similar methodology.

71

7 References

Abraham, J., Higdon, D., Nelson, J., & Ibarra, J. (2018). Cryptocurrency price prediction

using tweet volumes and sentiment analysis. SMU Data Science Review , 1 (3).

Ballis, A., & Drakos, K. (2020). A markov chain analysis for capitalization dynamics in the

cryptocurrency market. Munich Personal RePEc Archive. Retrieved from https://mpra.ub

.uni-muenchen.de/109329/

Baumol, W. J. (1970). Economic dynamics. Macmillan.

Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Mechanics,

6 (5), 679–684. Retrieved from http://www.jstor.org/stable/24900506

Bharathi, S., & Geetha, A. (2017). Sentiment analysis for effective stock market prediction.

International Journal of Intelligent Engineering and Systems, 10 (3), 146–154. doi: 10.22266/

ijies2017.0630.16

Buterin, V. (2014). Ethereum: A next-generation smart contract and decentralized applica-

tion platform. Retrieved from https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/

Ethereum Whitepaper - Buterin 2014.pdf

Cavalli, S., & Amoretti, M. (2021). Cnn-based multivariate data analysis for bitcoin trend

prediction. Applied Soft Computing , 101 . Retrieved from www.scopus.com (Cited By :18)

Cheng, Y., & Griffin, C. H. (2022). Tesla vs. its stock price: “herd theory” at work? (Vol. 16)

(No. 1).

Cochrane, J. H. (2015, Apr). Unit roots in english and pictures. Retrieved from https://

johnhcochrane.blogspot.com/2015/04/unit-roots-in-english-and-pictures.html

Critien, J. V., Gatt, A., & Ellul, J. (2022). Bitcoin price change and trend prediction through

twitter sentiment and data volume. Financial Innovation, 8 (1). Retrieved from www.scopus

.com (Cited By :1)

Delfabbro, P., King, D., & Williams, J. (2021, 06). The psychology of cryptocurrency trading:

Risk and protective factors. Journal of Behavioral Addictions, 10 . doi: 10.1556/2006.2021

.00037

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019 conference of

the north American chapter of the association for computational linguistics: Human language

technologies, volume 1 (long and short papers) (pp. 4171–4186). Minneapolis, Minnesota: Asso-

ciation for Computational Linguistics. Retrieved from https://aclanthology.org/N19-1423

doi: 10.18653/v1/N19-1423

72

https://mpra.ub.uni-muenchen.de/109329/
https://mpra.ub.uni-muenchen.de/109329/
http://www.jstor.org/stable/24900506
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
www.scopus.com
https://johnhcochrane.blogspot.com/2015/04/unit-roots-in-english-and-pictures.html
https://johnhcochrane.blogspot.com/2015/04/unit-roots-in-english-and-pictures.html
www.scopus.com
www.scopus.com
https://aclanthology.org/N19-1423

Dickey, D., & Fuller, W. (1979, 06). Distribution of the estimators for autoregressive time

series with a unit root. JASA. Journal of the American Statistical Association, 74 . doi:

10.2307/2286348

Durcheva, M., & Tsankov, P. (2019, Nov). Analysis of similarities between stock and cryp-

tocurrency series by using graphs and spanning trees. PROCEEDINGS OF THE 45TH INTER-

NATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING

AND ECONOMICS (AMEE’19). doi: 10.1063/1.5133581

Eichler, M. (2012). Causal inference in time series analysis. In Causality (p. 327-354). John

Wiley & Sons, Ltd. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/

9781119945710.ch22 doi: https://doi.org/10.1002/9781119945710.ch22

Fleischer, J. P., von Laszewski, G., Theran, C., & Bautista, Y. J. P. (2022). Time series

analysis of cryptocurrency prices using long short-term memory. Algorithms, 15 (7). Retrieved

from www.scopus.com

Frenken, K., & Schor, J. (2017). Putting the sharing economy into perspective. Environmental

Innovation and Societal Transitions, 23 , 3-10. Retrieved from https://www.sciencedirect

.com/science/article/pii/S2210422417300114 (Sustainability Perspectives on the Sharing

Economy) doi: https://doi.org/10.1016/j.eist.2017.01.003

Google-SearchLiaison. (2019a, Dec). Bert, our new way for google search to better understand

language, is now rolling out to over 70 languages worldwide. it initially launched in oct. for

us english. you can read more about bert below; a full list of languages is in this thread....

https://t.co/nukvdg6hym. Twitter. Retrieved from https://twitter.com/searchliaison/

status/1204152378292867074

Google-SearchLiaison. (2019b, Oct). Meet bert, a new way for google search to better under-

stand language and improve our search results. it’s now being used in the us in english, helping

with one out of every 10 searches. it will come to more counties and languages in the future.

pic.twitter.com/rj4ptc16zj. Twitter. Retrieved from https://twitter.com/searchliaison/

status/1187732030399889409

Goswami, A., Borasi, P., & Kumar, V. (2021, Jul). Cryptocurrency market size, share and

analysis: Forecast - 2030. Retrieved from https://www.alliedmarketresearch.com/crypto

-currency-market

Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral

methods. Econometrica, 37 (3), 424–438. Retrieved 2022-07-27, from http://www.jstor.org/

stable/1912791

Granger, C. (1980). Testing for causality. Journal of Economic Dynamics and Control , 2 ,

329–352. doi: 10.1016/0165-1889(80)90069-x

73

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119945710.ch22
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119945710.ch22
www.scopus.com
https://www.sciencedirect.com/science/article/pii/S2210422417300114
https://www.sciencedirect.com/science/article/pii/S2210422417300114
https://twitter.com/searchliaison/status/1204152378292867074
https://twitter.com/searchliaison/status/1204152378292867074
https://twitter.com/searchliaison/status/1187732030399889409
https://twitter.com/searchliaison/status/1187732030399889409
https://www.alliedmarketresearch.com/crypto-currency-market
https://www.alliedmarketresearch.com/crypto-currency-market
http://www.jstor.org/stable/1912791
http://www.jstor.org/stable/1912791

Gu, S., Lillicrap, T. P., Sutskever, I., & Levine, S. (2016). Continuous deep q-learning with

model-based acceleration. CoRR, abs/1603.00748 . Retrieved from http://arxiv.org/abs/

1603.00748

Hsieh, G., & Kocielnik, R. (2016, 02). You get who you pay for: The impact of incentives on

participation bias. In (p. 821-833). doi: 10.1145/2818048.2819936

Huang, A., Wang, H., & Yang, Y. (2020, Aug). Finbert—a deep learning approach to extracting

textual information. SSRN Electronic Journal . doi: 10.2139/ssrn.3910214

Jani, S. (2017, 12). An overview of ethereum & its comparison with bitcoin. International

Journal of Scientific & Engineering Research, 10 .

Ji, S., Kim, J., & Im, H. (2019). A comparative study of bitcoin price prediction using deep

learning. Mathematics, 7 (10). Retrieved from https://www.mdpi.com/2227-7390/7/10/898

doi: 10.3390/math7100898

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux. Retrieved

from https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/

Kim, K., Lee, S.-Y., & Assar, S. (2021, 11). The dynamics of cryptocurrency market behavior:

sentiment analysis using markov chains. Industrial Management & Data Systems, ahead-of-

print . doi: 10.1108/IMDS-04-2021-0232

Kingma, D., & Ba, J. (2014, 12). Adam: A method for stochastic optimization. International

Conference on Learning Representations.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis

of stationarity against the alternative of a unit root: How sure are we that economic time

series have a unit root? Journal of Econometrics, 54 (1), 159-178. Retrieved from https://

www.sciencedirect.com/science/article/pii/030440769290104Y doi: https://doi.org/10

.1016/0304-4076(92)90104-Y

Kwon, D., Kim, J., Heo, J., Kim, C., & Han, Y. (2019). Time series classification of cryptocur-

rency price trend based on a recurrent lstm neural network. Journal of Information Processing

Systems, 15 (3), 694-706. Retrieved from www.scopus.com

Li, M. (2021). Prediction of bitcoin price based on the hidden markov model. In Proceedings of

the 2021 3rd international conference on economic management and cultural industry (icemci

2021) (p. 2962-2967). Atlantis Press. Retrieved from https://doi.org/10.2991/assehr.k

.211209.481 doi: https://doi.org/10.2991/assehr.k.211209.481

Liebau, D., & Schueffel, P. (2019, 01). Crypto-currencies and icos: Are they scams? an empirical

study. SSRN Electronic Journal . doi: 10.2139/ssrn.3320884

74

http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1603.00748
https://www.mdpi.com/2227-7390/7/10/898
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://www.sciencedirect.com/science/article/pii/030440769290104Y
www.scopus.com
https://doi.org/10.2991/assehr.k.211209.481
https://doi.org/10.2991/assehr.k.211209.481

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D.

(2015). Continuous control with deep reinforcement learning. arXiv. Retrieved from https://

arxiv.org/abs/1509.02971 doi: 10.48550/ARXIV.1509.02971

Livieris:2021, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced cnn-

lstm model for cryptocurrency forecasting. Electronics (Switzerland), 10 (3), 1-16. Retrieved

from www.scopus.com (Cited By :16)

Ma, Y. c. C., Wang, Z., & Fleiss, A. (2021). Deep q-learning for trading cryptocurrency.

The Journal of Financial Data Science. Retrieved from https://jfds.pm-research.com/

content/early/2021/06/08/jfds.2021.1.064 doi: 10.3905/jfds.2021.1.064

Mai, F., Shan, Z., Bai, Q., Wang, X. S., & Chiang, R. H. L. (2018). How does social me-

dia impact bitcoin value? a test of the silent majority hypothesis. Journal of Management

Information Systems, 35 (1), 19-52. Retrieved from www.scopus.com

Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of explainability in creating

trustworthy artificial intelligence for health care: A comprehensive survey of the terminology,

design choices, and evaluation strategies. Journal of Biomedical Informatics, 113 , 103655. Re-

trieved from https://www.sciencedirect.com/science/article/pii/S1532046420302835

doi: https://doi.org/10.1016/j.jbi.2020.103655

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word represen-

tations in vector space. CoRR, abs/1301.3781 . Retrieved from http://dblp.uni-trier.de/

db/journals/corr/corr1301.html#abs-1301-3781

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . et al.

(2015). Human-level control through deep reinforcement learning. Nature, 518 (7540), 529–533.

doi: 10.1038/nature14236

Mohammad, S. M. (2016). 9 - sentiment analysis: Detecting valence, emotions, and other

affectual states from text. In H. L. Meiselman (Ed.), Emotion measurement (p. 201-237).

Woodhead Publishing. Retrieved from https://www.sciencedirect.com/science/article/

pii/B9780081005088000096 doi: https://doi.org/10.1016/B978-0-08-100508-8.00009-6

Nadeau, R., Cloutier, E., & Guay, J.-H. (1993). New evidence about the existence of a

bandwagon effect in the opinion formation process. International Political Science Review

/ Revue internationale de science politique, 14 (2), 203–213. Retrieved 2022-07-31, from

http://www.jstor.org/stable/1601152

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from http://

www.bitcoin.org/bitcoin.pdf

Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and

cryptocurrency technologies: A comprehensive introduction. Princeton University Press.

75

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
www.scopus.com
https://jfds.pm-research.com/content/early/2021/06/08/jfds.2021.1.064
https://jfds.pm-research.com/content/early/2021/06/08/jfds.2021.1.064
www.scopus.com
https://www.sciencedirect.com/science/article/pii/S1532046420302835
http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781
http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781
https://www.sciencedirect.com/science/article/pii/B9780081005088000096
https://www.sciencedirect.com/science/article/pii/B9780081005088000096
http://www.jstor.org/stable/1601152
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

Nascimento, K. K. F., Santos, F. S., Jale, J. S., Júnior, S. F. A. X., & Ferreira, T. A. E.

(2022, Feb 11). Extracting rules via markov chains for cryptocurrencies returns forecasting.

Computational Economics. Retrieved from https://doi.org/10.1007/s10614-022-10237-7

doi: 10.1007/s10614-022-10237-7

Polasik, M., Piotrowska, A., Wisniewski, T., Kotkowski, R., & Lightfoot, G. (2015, 09). Price

fluctuations and the use of bitcoin: An empirical inquiry. International Journal of Electronic

Commerce, 20 , 9-49. doi: 10.1080/10864415.2016.1061413

Ramadani, K., & Devianto, D. (2020, Nov). The forecasting model of bitcoin price with fuzzy

time series markov chain and chen logical method. INTERNATIONAL CONFERENCE ON

SCIENCE AND APPLIED SCIENCE (ICSAS2020). doi: 10.1063/5.0032178

Sattarov, O., Muminov, A., Lee, C. W., Kang, H. K., Oh, R., Ahn, J., . . . Jeon, H. S. (2020).

Recommending cryptocurrency trading points with deep reinforcement learning approach. Ap-

plied Sciences (Switzerland), 10 (4). Retrieved from www.scopus.com (Cited By :11)

Schnaubelt, M. (2022). Deep reinforcement learning for the optimal placement of cryptocurrency

limit orders. European Journal of Operational Research, 296 (3), 993-1006. Retrieved from

www.scopus.com (Cited By :5)

Shen, D., Urquhart, A., & Wang, P. (2019). Does twitter predict bitcoin? Economics Letters,

174 , 118-122. Retrieved from www.scopus.com (Cited By :120)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.

(2017). Attention is all you need. CoRR, abs/1706.03762 . Retrieved from http://arxiv.org/

abs/1706.03762

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2015).

Dueling network architectures for deep reinforcement learning. arXiv. Retrieved from https://

arxiv.org/abs/1511.06581 doi: 10.48550/ARXIV.1511.06581

What is ether (eth)? (n.d.). Retrieved from https://ethereum.org/en/eth/

Woroniuk, D. (2021). Historic crypto. https://github.com/David-Woroniuk/Historic

Crypto. GitHub.

Zhu, Y., Kiros, R., Zemel, R. S., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler,

S. (2015). Aligning books and movies: Towards story-like visual explanations by watching

movies and reading books. CoRR, abs/1506.06724 . Retrieved from http://arxiv.org/abs/

1506.06724

76

https://doi.org/10.1007/s10614-022-10237-7
www.scopus.com
www.scopus.com
www.scopus.com
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://ethereum.org/en/eth/
https://github.com/David-Woroniuk/Historic_Crypto
https://github.com/David-Woroniuk/Historic_Crypto
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724

8 Appendices

8.1 Azure Databricks setup

1. Navigate to https://portal.azure.com/ and login or create an account.

2. Click “Create a Resource” from the dashboard page:

3. Search for “Databricks”, select the Azure Databricks plan, and click “Create”:

4. Select an Azure Subscription (used as a source of payment) and resource group. Then, fill in

the instance details, noting that region pricing for virtual machines can differ significantly.

If the Spark workflow does not require network streaming, It is encouraged to select the

cheapest region for per-hour pricing of high-memory virtual machines. Finally, in the

pricing tier, select Standard.

77

5. Wait for the deployment to complete (this may take several minutes), click “Go to resource”,

then “Launch Workspace”.

6. Once Databricks opens and is signed in using Azure AD, select the Compute tab and click

“Create Cluster” under the “All-purpose clusters” tab:

78

7. Complete the cluster configuration details, selecting “Standard D12 V2” as the worker

type, with 2-8 workers and autoscaling enabled. The driver type should be the same as the

worker type:

79

8. In the Advanced options, add the following two lines of Spark config code (from the Spark

NLP installation guide), then click “Create Cluster”:

• spark.kryoserializer.buffer.max 2000M

• spark.serializer org.apache.spark.serializer.KryoSerializer

80

9. Select the “Libraries” tab, then “Install new”. Add the following packages to the PyPi and

Maven tabs respectively:

• PyPi Package: spark-nlp

• Maven Coordinates: com.johnsnowlabs.nlp:spark-nlp 2.12:4.0.2

10. Select the “Data” tab, and click “Create Table”. Upload the .csv file of collected Tweets,

making note of the 2GB file size limit for the local I/O API:

81

11. If the file is too large, it can be directly upload to the Azure Blob Storage bucket for the

Databricks instance. If someone else is hosting the file, it can also be uploaded to Google

Drive and downloaded to the DBFS FileStore using the get from gdrive() function in the

code, being sure to make the sharing link public and filling in the required parameter for

file id.

12. Select the “Workspace” tab, and navigate to the user space. Import the .ipynb Jupyter

notebook or DBC archive for the project:

82

13. Open the notebook, attach the notebook to the compute cluster that was created, then

run the code:

83

8.2 Spark dataframe show() method

Figure 28: Spark Dataframe with rows of Twitter data

84

8.3 Unit root testing

8.3.1 Ether closing price

Figure 29: ADF test on Ether closing price

85

Figure 30: KPSS test on Ether closing price

86

Figure 31: ADF test on first order difference Ether closing price

87

Figure 32: KPSS test on first order difference Ether closing price

88

8.3.2 Sentiment scores

Figure 33: ADF test on sentiment scores

89

Figure 34: KPSS test on sentiment scores

90

Figure 35: ADF test on first order difference sentiment scores

91

Figure 36: KPSS test on first order difference sentiment scores

92

8.3.3 Number of Tweets

Figure 37: ADF test on number of Tweets

93

Figure 38: KPSS test on number of Tweets

94

Figure 39: ADF test on first order difference number of Tweets

95

Figure 40: KPSS test on first order difference number of Tweets

96

9 About the author

This thesis was written exclusively by myself, David Gallo. You can read more about me at

https://dgallo.ca/

I am a technology consultant and data scientist by profession, often working in positions that

need both strong data and programming knowledge as well as business acumen. I was born and

raised in Ottawa, Canada, where I completed an Honours Bachelors of Commerce specialized

in Business Technology Management, with the French immersion and Co-operative Education

options. I graduated with highest distinction, Summa Cum Laude, before moving to France for

a Master of Science in Artificial Intelligence and Business Analytics at the Toulouse Business

School. This thesis serves as the last requirement for my master’s candidacy.

My past work experience includes business technology consultancy at Deloitte. As an analyst

and consultant with the firm, I delivered a wide variety of technology transformation projects,

from strategy to implementation. My projects focused on digital modernization for organizations,

mostly for data and information management.

I had previously worked at CIRA, where I was the data scientist for a new DNS firewall prod-

uct working with an agile team. I built machine learning workflow with Logstash, ElasticSearch,

MySQL, Python, and Kibana to process DNS data in real-time, and hierarchical density-based

clustering techniques with Python libraries to analyze millions of daily DNS requests, in an

integrated AWS environment.

Before that, I worked at the Department of National Defence for the Government of Canada

as a database administrator, at the Department of Fisheries and Oceans as a legal correspondence

officer, at MNP as a developer/analyst, and at the Department of National Defence as a records

manager.

On the side, I enjoy making things with my 3D printer, programming, playing music (both

drums and piano), D&D, and playing soccer.

97

https://dgallo.ca/

	List of Figures
	List of Tables
	Introduction
	Context
	What is cryptocurrency?
	How do cryptocurrency investments differ from equity investments?
	What is sentiment analysis?
	What is Granger causality?
	What is a Markov Decision Process?
	What is Q-learning?
	What is Deep Q-Network Learning?
	What are extensions to Deep Q-Learning?
	How can sentiment analysis and Deep Q-Networks be used to trade cryptocurrency?
	Why is this research important?

	Research objectives
	Research questions

	Literature Review
	Social media sentiment and cryptocurrency prices
	Sentiment analysis and ANNs for cryptocurrency price prediction
	Reinforcement learning for cryptocurrency price prediction
	Literature discussion and gaps

	Methodology
	Hardware/software environment
	Cryptocurrency selection
	Financial data collection
	Social media text collection
	Sentiment analysis
	Feature engineering
	Granger causality
	Trading rules
	Experience replay memory
	DDDQN model architecture
	DDDQN parameters
	DDDQN training process

	Results Analysis
	Data exploration
	Ether price data
	Ether Twitter sentiment scores

	Granger causality testing
	Deep Q-Networks
	Twitter data omitted from feature input
	Twitter data included from feature input

	Recommendations
	Conclusion
	References
	Appendices
	Azure Databricks setup
	Spark dataframe show() method
	Unit root testing
	Ether closing price
	Sentiment scores
	Number of Tweets

	About the author

